Post Cleaning Chemical of Tungsten Chemical Mechanical Planarization for Memory Devices

Jun Yong Kim Cleaning/CMP Technology

- 1. CMP Process and Cleaning challenges
- 2. Problem Statement
- 3. Results of Cleaning Chemical Evaluation
- 4. Summary

Chemical Mechanical Polishing (CMP)

- CMP was first introduced to semiconductor process to planarize ILD.
- With improvements in equipment and consumables, CMP is used in STI CMP for isolation, W, Cu CMP for metallization and Buffing CMP for particle removal.
- The number of W CMP steps is increasing with the introduction of VNAND.

DEFECT control

Slurry	Abrasive Size, Shape	Uniform, Round	→
Disk	Diamond Height, Arrangement	Even protrusion, Regular	
Pad	Contact, Hardness	Uniform, Soft	- MACONA
Process /Consumables	Head Pressure, Brush gap, Brush	Low Brushless	Defect
Environment	Foreign Particle, Pattern	Edge Engineering	Real Real Dummy
Chemical	Cleaning Time	-	-

- CMP process has been developed through equipment, functional slurries and pad, disk.
- Scratch reduction has been mainly made through pad, slurry changes.
- Particles are reduced through changes in brush and process conditions.
- Post CMP Cleaning Chemicals(SC1,NH4OH, and HF) have been used since CMP process was introduced.

Post CMP cleaning Challenges

- Abrasive particle
 - Ceria Slurry Cleaning
- Smaller abrasive size
 - Smaller Particles are More Difficult to Remove
 - Difficult to measure
- Non-visual defect
 - Defects can be confirmed by Fab-out yield.
- Limited cleaning chemical
 - SC1, NH₄OH, HF
- Effect of brush lifetime
- Dependency on tool
- Design rule

Results of Cleaning Chemical Evaluation

- 1. Problem Statement
- 2. Contamination Source
- 3. Evaluation of Ammonia, HF
- 4. Evaluation of Formulated Cleaning Chemical
 - Defect on blanket wafer
 - Properties of Formulated Chemical
 - Results of Tungsten Surface Analysis
 - Results of Application to Pattern Wafer

Typical Tungsten CMP Process

I . Polishing

II. Cleaning

- Tungsten CMP process consists of two process, a main polishing process and a post-CMP cleaning process.
- In the post-CMP cleaning step, all of the wafers were treated with wet chemicals to remove the remaining chemicals and abrasives on the wafer.

Defects Induced W CMP Process

- Defects to be removed from W CMP process include slurry residues, organic particles, scratches and bridge.
- Bridge: Materials on the surface after W CMP causes the subsequent Metal line connection
- Conducting materials can result in the product yield loss.

Problem Statement

Bridge Fail on W CMP

- The conductive material that induces the bridge is Ti, W.
- As device design rules decrease, failure counts increase.
- Residues that contribute to this issue are undetectable and do not correlate to total defects on the wafer.

Cross Contamination Source

V_SEM Image

- The wafer surface has multiple films such as W, Ti, TiN, Oxide.
- These can cause brush contamination.

Evaluation of Brush contamination

- Defects do not increase significantly during oxide film wafer polishing.
- Defect and metal contamination increase after polishing tungsten wafer.

Brush Cleaning can contaminate wafers.

→ Bridge fail Increase according to Wafer Polishing.

Evaluation of Brush contamination

Brush Lifetime (Wafer Count, Normalized)

- Brush contamination is associated with an increase of defect and affects an increase in the number of failures due to invisible defects.
- As a result, the defects or failures were controlled by limiting brush usage time.

Effect of Cleaning Chemicals

	Brush	Spray1	Spray2	SRD
1	NH ₄ OH	X	X	0
2	NH ₄ OH	HF	X	0
3	NH ₄ OH	HF	NH ₄ OH	0

- HF Cleaning is most effective in removing particles
- Is it possible to increase HF cleaning time?
 - → W protrusion, pattern damage, etc
- Is it possible to increase NH₄OH cleaning time?

Effect of NH₄OH on Devices

NH₄OH Process Time

- As the NH₄OH cleaning time increases, visible or detectable defects are reduced.
- The number of failures count due to invisible defect is increased regardless of defect reduction.

Target W CMP Cleaning

- NH4OH
 - 1) remove particle.
 - 2) Low W compatibility.
- HF
 - 1) Improve clean performance.
 - 2) Cause the loss of TiN barrier.
 - 3) Make negative impact on the device performance.
 - 4) Damage the tungsten plug and the underlying layer.

- Brush :
 - 1) Become loaded with slurry particles.
 - 2) The efficiency was reduced gradually.

	NH4OH	HF	Target Formulated Chemical
Tungsten	X	0	0
TiN	Ο	X	Ο
Clean Efficiency	Δ	0	Ο
Brush Lifetime Dependency	Ο	Ο	?

Therefore, the use of a formulated chemistry is quite critical in Tungsten Post CMP clean process.

Target Defect Removal

- Surfactant : Prevention of re-adsorption of particle
- Chelating Agent: Metal decontamination
 - → Metallic contamination removed from the surface is stabilized in the solution by chelating agents
- pH: Acid (W etch prevention)
 - → Re-adsorption side effect is overcome with surfactant
- Additive
 - → Silica particle removal and organic residue removal

Corrosion Potential of W/Ti Cleaning Chemical NH₄OH

Evaluation of potential change according to ammonia cleaning time

- 1. The potential shifts to positive depending on the NH4OH exposure time.
- 2. The barrier metal increases the possibility of being reduced or precipitated.

Particle Removal

- Formulated chemicals show the smallest number of defects.
- There is no correlation between the reduction of the defect and the yield.
- After selecting the best formulation for particle removal on blanket wafers, pattern wafers were cleaned with new chemical.

Particle Removal

Typical defect after NH₄OH/HF

Typical defect after DIW Clean

Image courtesy of VERSUM

 Cleaning processes like NH₄OH/ HF appeared more successful in removing large particles however appeared insufficient for removing small particles.

Properties of Formulated Chemical

Tungsten surface analysis result

$$W^{+} + 3H_{2}O \rightarrow WO_{3} + 6H^{+} + 6e^{-}$$

 $WO_{3} + H_{2}O \rightarrow WO_{4}^{2-} + 2H^{+}$

- Formulated chemistries are able to increase stable metallic species on the surface.
- Ammonia treated sample has higher oxidation of the surfaces, likely a result of tungsten dissolving to form WO₄²-and re-depositing back.
- Re-deposition may be a concern for electrical leakage.

Evaluation Results on Pattern Wafer

	Brush	Spray1	Spray2
A	NH_4OH	HF	NH ₄ OH
В	Chemical	Chemical	Chemical

- Defects decreased under the B condition.
- It has been confirmed that it has decreased even after subsequent film deposition to see smaller defects.
- Formulated Chemical is effective for particle removal and bridge failure reduction.

Summary

- 1. The CMP process has been mainly improved with tool, slurry, and pad for planarity, uniformity and defect.
- 2. As the device design rule decreases, bridge failure must be improved.
- 3. Improvements with existing chemicals (NH₄OH, HF) are limited.
- 4. In the memory devices, post CMP cleaning chemicals have been applied to the Cu processes, but there is also a need for new chemicals for W CMP.
- 5. It has been confirmed that the bridge generation by environment, chemicals can be reduced and the process margins can be increased using formulated chemicals.