

19th Surface Preparation and Cleaning Conference (SPCC)

# Characterization of incoming PVA brush for 10nm below post CMP cleaning process

April 11, 2018

Jung-Hwan Lee<sup>1</sup>, Murhukrishnan Purushothaman<sup>1</sup>, Kwang-Min Han<sup>1</sup>, Shohei Shima<sup>3</sup>, Satomi Hamada<sup>3</sup>, Hirokuni Hiyama<sup>3</sup>, and Jin-Goo Park<sup>1,2,\*</sup>

Department of <sup>1</sup>Bionanotechnology and <sup>2</sup>Materials Science and Chemical Engineering, Hanyang University, <sup>3</sup>EBARA Corporation \*jgpark@hanyang.ac.kr

NEMPL Hanyang University

Hanyang Univ., Ansan, 426-791, KOREA

## **Post CMP Cleaning**



#### **Configurations of post CMP Cleaning Module**

### PVA Brushes!!





< "A" CMP & P-CMP Tool>

Cassette Line

## **PVA Brush Cleaning Process**



#### Brush Cleaning Module



## Schematic diagram of Brush Cleaning Module



#### Advantages of Brush Cleaning

- ➤ High cleaning efficiency due to its physical force by direct contact between brush and wafer surface.
- Effective low cost of ownership (COO)
- Process flexibility with various solutions

## Defects from PVA Brush as a function of process time



Defect Count Vs. Wafer Run No.



- Defect Level: Initial-stage > Last-stage >> Main Process
- > An incoming brush shows higher defect level at initial-stage due to the presence of residual impurities inside the brush.
- Pre-treatment process (break-in process) for the removal of impurities from incoming brush is necessary before using.

## **Break-in Process of Incoming Brush**



#### Effect of Brush Break-in Process



(a) Defect map before and after Break-in



(b) SEM images of organic residue defect

- Conventional break-in process applies **DIW flow through** method and **scrubbing** on dummy wafer to remove impurities from incoming brush.
- Break-in process significantly reduces impurities of new brush and increases efficiency of post CMP cleaning. \*Ref: Hong Jin Kim, Korea Cleaning UGM 2016

## **Conventional Analysis Methods of Impurities**



## Analysis of brush Impurities after DIW Flow Through Break-in



**Extremely Low Conc. Impurities** 

Composition of impurities from incoming brush was not studied due to extremely low concentration of impurities in conventional break-in method.

## **Developed Analysis Methods of Impurities**



Analysis of brush Impurities after Ultrasonication process



Developed characterization method using ultrasonication can extract impurities at higher concentration and make it possible to analyze the impurities.

## **Characterization Procedure and Equipment**





## **Characterization Procedure and Equipment**



| Status | Equipment                            | Analysis                       |  |
|--------|--------------------------------------|--------------------------------|--|
|        | Liquid Particle Counter <sup>2</sup> | Number of particulate impurity |  |
| Wet    | ICP-MS <sup>1, 3</sup>               | Type of Impurity (Inorganic)   |  |
|        | LC-MS <sup>4</sup>                   | Type of Impurity (organic)     |  |
| Dent   | FE-SEM <sup>5</sup>                  | Shape, Size                    |  |
| Dry    | TOF-SIMS <sup>6</sup>                | Type of Impurity (organic)     |  |

Wet: Measurement of impurities in solution

Dry: Measurement of impurities after drying process

## 1. ICP-MS Analysis of Incoming Brush without Extraction



Analysis Procedure of Inorganic Impurity from Brush (Without Extraction)



\*ICP-MS: Inductively coupled plasma mass spectrometry

Inorganic impurities in brush w/o extraction process was analyzed by using ICP-MS analysis.

## 1. ICP-MS Analysis of Incoming Brush without Extraction



#### **❖** Analyzed Inorganic Impurities from Brush

| Element | Concentration (ug/g, ppm) | SD (Standard Deviation) | Relative<br>SD (%) | Composition (%) | Total Amount<br>(ug/g, ppm) |
|---------|---------------------------|-------------------------|--------------------|-----------------|-----------------------------|
| Si      | 4278.596                  | 157.878                 | 3.690              | 88.650          | <br>                        |
| Ti      | 523.721                   | 25.080                  | 4.789              | 10.851          |                             |
| W       | 0.036                     | 0.002                   | 4.162              | 0.001           | 4,826                       |
| Cu      | 14.118                    | 0.672                   | 4.764              | 0.293           |                             |
| Fe      | 9.916                     | 0.751                   | 7.575              | 0.205           |                             |

- > ICP-MS analysis shows the presence of Si residues in an incoming brush.
- > An incoming brush contains high level of Si based impurity.

## 2. Liquid Particle Analysis of Extracted Solution



#### # of Particle Vs. Ultrasonication Time



#### ❖ Particle Size Distribution



- Most of the particulate contaminants were extracted completely within 10 min.
- Particle size range: X nm ~ 4 um
- Ultrasonication is very effective and fast process to capture the impurities from the brush.

## 3. ICP-MS Analysis of Extracted Solution



**❖** Analysis Procedure of Inorganic Impurities from Extracted Solution



Inorganic impurities w/ ultrasonically extraction process was analyzed by using ICP-MS analysis.

## 3. ICP-MS Analysis of Extracted Solution



#### **❖ ICP-MS results of Extracted Solution from Brush**

| • | Element | Concentration<br>(ng/mL, ppb) | Relative<br>SD (%) | Composition (%) | Total Amount<br>(ng/mL, ppb) |
|---|---------|-------------------------------|--------------------|-----------------|------------------------------|
| i | Si      | 35.355                        | 2.8                | 74.11           | I                            |
|   | Ti Ti   | 3.422                         | 4.3                | 7.17            | -                            |
|   | W       | 2.403                         | 2.3                | 3.36            | 47.703                       |
|   | Cu      | 4.924                         | 1.8                | 10.32           |                              |
|   | Fe      | 1.602                         | 2.4                | 5.04            |                              |

➤ ICP-MS analysis confirms the presence of Si impurities in ultrasonically extracted solution of incoming brush.

## 4. LC-MS Analysis of Extracted Solution





- Siloxane peaks were observed from extracted solution.
- This LC-MS result is well matched with ICP-MS results.

## **5. FE-SEM Measurement of Dried Sample**



**❖ FE-SEM Images of Impurities after Drying Process** 



- Organic contaminants and particles were observed.
- Density : organic contaminants >> particles

### 5. FE-SEM Measurement of Particles



#### **❖ FE-SEM Images of Particulate Impurities**









- Particle size range: 200 nm ~ 4 um
- > These FE-SEM results are well matched with LPC results.

## **5. EDX** Analysis of Contaminants



#### Uncontaminated Area



| EDS Quantitative<br>Results |        |        |
|-----------------------------|--------|--------|
| Element Wt% At%             |        |        |
| SiK                         | 100.00 | 100.00 |

#### Contaminated particle



| EDS Quantitative<br>Results |       |       |
|-----------------------------|-------|-------|
| Element                     | Wt%   | At%   |
| СК                          | 61.60 | 73.30 |
| ОК                          | 18.62 | 16.64 |
| SiK                         | 19.78 | 10.07 |

#### ❖ Contaminated Area



| EDS Quantitative<br>Results |       |       |
|-----------------------------|-------|-------|
| Element                     | Wt%   | At%   |
| СК                          | 43.34 | 64.14 |
| SiK                         | 56.66 | 35.86 |

#### Contaminated Area



| EDS Quantitative Results |                 |  |
|--------------------------|-----------------|--|
| Wt%                      | At%             |  |
| 61.38                    | 74.60           |  |
| 13.57                    | 12.38           |  |
| 25.06                    | 13.02           |  |
|                          | Wt% 61.38 13.57 |  |

Organic contaminants and particles show carbon peak.

## 6. TOF-SIMS Analysis of Dried Sample





# Siloxane Si backbone Carbon side

chain

Siloxane: Organosilicon with Si-O-Si linkage

- Siloxane peaks were observed from incoming brush after dried on Si wafer substrate.
- This TOF-SIMS result is well matched with ICP-MS and LC-MS results.

## **FE-SEM Images of Ultrasonicated Brush**









No noticeable damages were observed from ultrasonically characterization process

## **Porosity Measurement of Ultrasonicated Brush**



Porosity %= 
$$\frac{B-A}{(B-A)+\frac{A}{D_{pva}}}$$
 A: empty weight of the brush B: weight of the brush after soaking in water  $D_{pva}$ : density of the PVA (1.3 g/cm<sup>3</sup>)



Porosity of PVA brush was not changed after ultrasonication for 6 hours.

# Analysis Procedure: Effect of Cleaning Chemistry(TMAH) on PVA Brush





> PVA brush was dipped in 1wt.% TMAH sol. to observe the effect of cleaning chemicals (TMAH) on impurity generation from brush.

## **Effect of TMAH chemistry on PVA brush**



#### **❖ FE-SEM Images of Organic Residue from Brush Dipped in 1wt.% TMAH**





Brush dipped in 1wt.% TMAH solution shows organic residue contamination.

## **Transport Mechanism of Siloxane by Cleaning Chemical**



- 1. In general, organic residues were observed in metal(especially Cu) CMP process.
- 2. Cleaning chemical of Cu CMP include **TMAH**.
- 3. TMAH has high dissolution ability of siloxane.
- 4. Siloxane can be delivered from inside of brush to metal surface due to cleaning chemical.



## Summary



- 1. Ultrasonication is very effective and fast method to characterize the PVA brush.
- 2. Incoming PVA brush contains 2 types of impurities (soluble and insoluble).
- 3. Soluble impurities such as **siloxane** may create **organic residues**.
- 4. Insoluble impurities such as **PVA debris** may create **particle residues**.

|                 | Soluble Impurity                  | Insoluble Impurity              |
|-----------------|-----------------------------------|---------------------------------|
| Composition     | Siloxane                          | Weakly bonded <b>PVA</b> debris |
| Shape           | Thin and circular organic residue | Particle                        |
| Analysis Method | ICP-MS, TOF-SIMS,<br>LC-MS        | LPC, FE-SEM,<br>TOF-SIMS        |

## Summary



5. Soluble impurities may be a root cause of organic residues after post CMP cleaning process.



(a) Organic Residue from Brush



(b) Organic Residue after post Cu CMP Cleaning

\*Courtesy from GlobalFoundries

6. Siloxane can be delivered from inside of brush to metal surface due to etching ability of cleaning chemical.

