Development of Wet-etch Chemistries for Tungsten Word-line Recess

CK Ge[†], Wen Dar Liu and Yi-Chia Lee Versum Materials Technology LLC., 2F, No.25, Lane 62, Chung Ho Street, Chupei City, Hsinchu County 30267, Taiwan

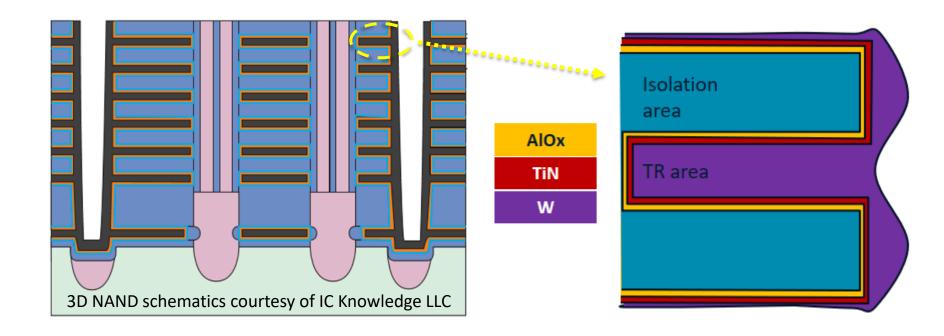
† Corresponding author: ck.ge@versummaterials.com

2018 Surface Preparation and Cleaning Conference April 09-11, 2018 in Boston, MA

Agenda

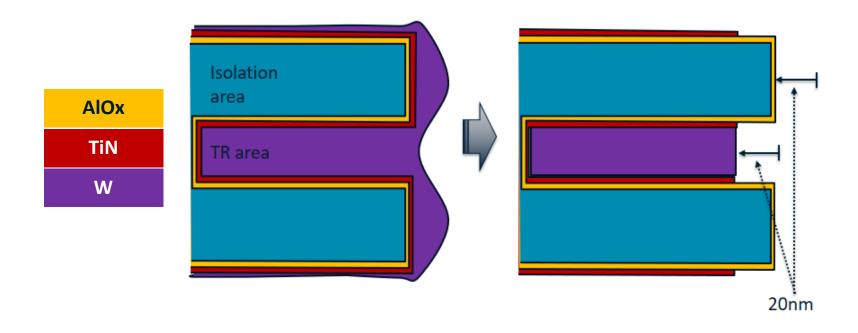
✓ Introduction

- 3D NAND technical background
- 3D NAND technical challenge of W recess
 - Dry-etch methods
 - Conventional wet-etch methods
- Critical technical specification


✓ Wet etchants for 3D NAND W recess

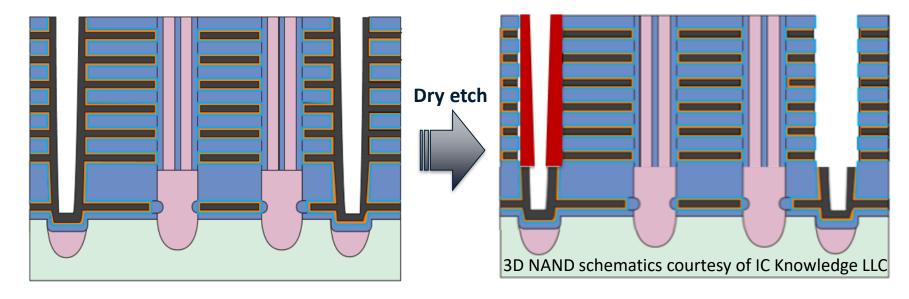
- Design concept
- Etch rate performance

✓ Summary


Technical Background

 During fabrication of the 3D NAND memory device, tungsten(W) recess for word-line(WL) isolation is one of the key processes. Typically, high-k/metal gate are used for the connection of tungsten control gate.

Technical Background



- In the recessing process, TiN and W should be simultaneously etched with equal thickness
- AlOx is the protecting layer that should not be damaged

Technical Challenge of W recess

- Dry-etch Methods

• As the number of layer increases, it's difficult to completely etch the bottom layer of W and TiN by dry etch-methods because the dry-etching byproduct from the top layer would remain in the trenches and restrict etching the bottom layer. Therefore, wet-etch method is proposed as an alternative for W recess.

Technical Challenge of W recess

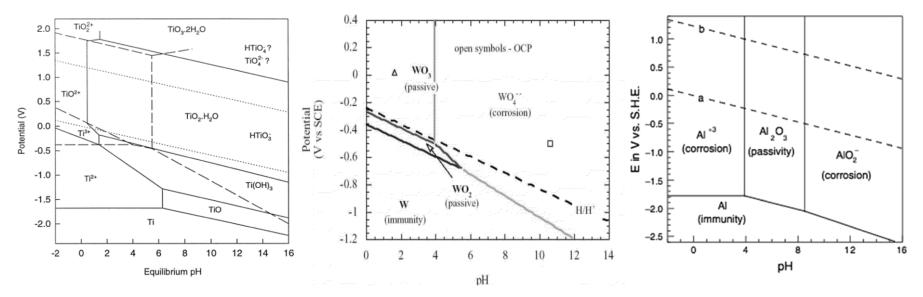
- Conventional Wet-etch Methods

AlOx compatibility

Typical wet-etch chemicals would easily etch the AlOx and cause a recess in the side wall of the channel at the AlOx layer that forms an undesirable floating gate, and results in an on-current degradation for the NAND string.

Long process time

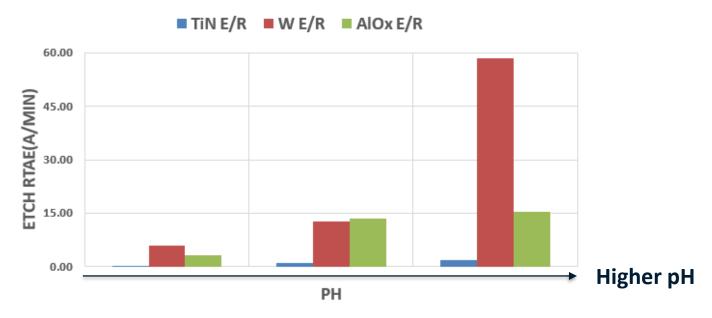
Conventional wet etchants show low TiN or W etch rates that result in the extremely long process time(over 1 hr). The long process time means the application needs to operate in batch type tool and restricts the SWT application.



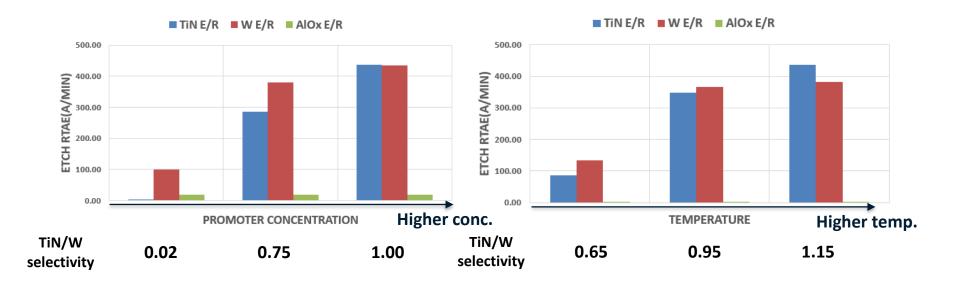
Critical Technical Specification

	Target	Conventional Wet-etchant	
TiN E/R (A/min)	>30	~2	
W E/R (A/min)	>30	~2	
TiN/W E/R selectivity	~1	~1	
AlOx E/R (A/min)	<1	<1	

- The wet etchant should perform equal TiN and W etch rates which means the TiN/W selectivity is close to 1
- AlOx is used as the protecting layer of transistors and barrier layer of plugs, so the chemical should be compatible with AlOx
- Conventional Wet-etchant shows low TiN and W etch rates, it needs extremely long time for processing
- Developing the etchants with higher TiN and W etch rates to shorten the process time is one of the important issues

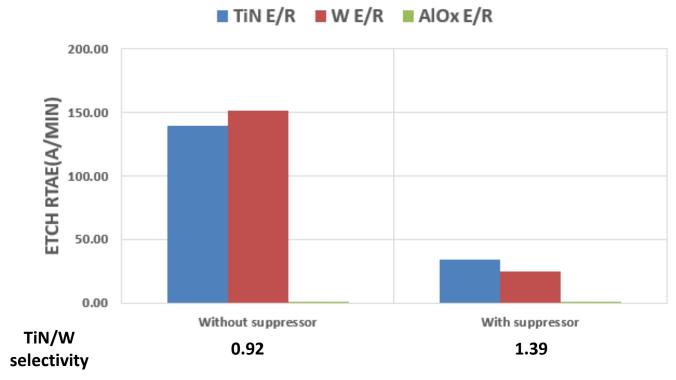

- Design Concept

Key Components	Functions		
Α	Transform TiN to TiOx, and W to WOx		
В	Adjust pH to control TiN, W and AlOx etch		
С	Promote TiN etch rate, and improve TiN/W selectivity		
D	Suppress TiN & W etch rates, and improve TiN/W selectivity		



Design Concept (pH Effect)

- TiN, W and AlOx etch rates increased while pH was higher.
 especially, the impact on W is much greater
- Need to control the pH to avoid AlOx being damaged
- Need additional component or method to increase TiN etch, and improve TiN/W selectivity


- Design Concept (TiN Promoter & Temp. Effect)

- TiN E/R can be boosted by two ways, adding promoter and adjusting process temperature. TiN/W selectivity can be also improved
- AlOx etch rate change was minimal

Design Concept (Etch Rate Suppressor)

- Both TiN and W etch rates would decrease while suppressor is added, and the TiN/W selectivity also gets higher
- No significant influence on AlOx e/r

- Etch Rate Performance

	Target	Etchant 1	Etchant 2	Etchant 3
Process temp. (°C)	-	35	25	30
TiN E/R (A/min)	>30	>300	>150	>50
W E/R (A/min)	>30	>300	>150	>50
TiN/W E/R selectivity	~1	0.95	0.92	1.20
AlOx E/R (A/min)	<1	<1	<1	<1

- The W etch rate could be adjusted to around 50A/min, 150A/min and 300A/min respectively, and meanwhile the TiN to W selectivity are close to 1
- Additionally, all three etchants are compatible with AlOx

Summary

- We developed the wet-etch chemistries to replace the conventional chemicals and overcome technical issues for W recess application.
- The W etch rate could be adjusted to around 50A/min, 150A/min and 300A/min respectively, and meanwhile the TiN to W selectivity are close to 1.
- All of the etchants are compatible with AlOx (etch rate < 1A/min).
- With such high TiN and W etch rates, the wet-etch chemistries make the W word-line recess application possible to be operated on SWT.

Acknowledgments

- ✓ I would like to express my appreciation to all of the group members for supporting this research.
 - Yi-Chia Lee

Ginny Chung

Aiping Wu

Wen Dar Liu

• Cindy Chou

Hoon Song

Amy Chen

- Sheng-Wen Wu
- Steve Ryu

Shawn Chen

Allen Huang

• Tino Li

Aron Chen

Ryback Lo

George Peng

Lan Shing Lee

- Alan Hsu
- IC Knowledge LLC for providing the pictures of devices on pages 3 and 5

THANK YOU

