Selective isotropic etching of Group IV semiconductors to enable gate all around device architectures

SPCC, April 10, 2018

S. Kal1, C. Pereira1, Y. Oniki2, F. Holsteyns2, J. Smith1, A. Mosden1, K. Kumar1, P. Biolsi1, T Hurd1.

1TEL Technology Center, America, LLC, USA

2Imec, Belgium

Subhadeep.Kal@us.tel.com
Chemical Oxide Removal (COR) Reaction Mechanism: Case for SiO₂ etch

- HF and NH₃ adsorb on the SiO₂ surface, reacting to form (NH₄)₂SiF₆ (Ammonium Fluorosilicate - AFS)

Slide courtesy: Tokyo Technology Solutions
A typical oxide etch process with Certas

~4X Volume Expansion
12nm Oxide Removal Recipe

(COR → PHT) process can be repeated in cyclic fashion to meet process requirements

Ability to:
- Process with PR
- Additional knob to control:
 - Pattern wiggling
 - Pattern damage

Slide courtesy: Tokyo Technology Solutions
Nanosheet Selective Etches

INNER SPACER MODULE

HM: SiN (or SiCN, SiOC)
Spacer: SiOxCyNz
Inner spacer: SiOxCyNz (would be different from spacer material)

Spacer formation
Fin recess
Cavity etch
Inner spacer formation
Nanosheet Selective Etches

SD/ILD0/RMG MODULES

N-EPI: SiGe:B, P-EPI: Si:P
CESL: SiN
ILD0: SiO2
Dummy poly (dummy gate): a-Si
Selective SiGe etch for Nanowire

Partial release:
- SiGe etch = 5-6 nm (each side, total = 10-12 nm)
- Si loss < 1 nm
- Etch target and uniformity > 5 Å
- Square SiGe etch front

Full release:
- SiGe etch ~ 25 nm (each side, total ~ 25 nm)
- Si loss < 1 nm

The above data is on blanket films
Summary for Si/SiGe stack:

- Selective SiGe: Si etch on imec wafer looks good (SiGe:Si >50:1)
- SiGe etch front looks VERY flat/square
- SiGe EA proportional etch time, without additional Si loss
- Partial SiGe etch uniformity ~3nm for Left /right side & top/bottom layers (incoming tapper may contribute)
COR SiGe:Si etch: pressure optimization

<table>
<thead>
<tr>
<th>Incoming</th>
<th>POST TEL gas phase etch (Recipe B: medium etch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No process</td>
<td>P1</td>
</tr>
</tbody>
</table>

Summary for Si/SiGe stack:

- Selective SiGe: Si etch on imec wafer looks good (SiGe:Si >50:1)
- SiGe etch front looks VERY flat/square
- SiGe EA proportional etch time, without additional Si loss
- Pressure (i.e. etch gas partial pressure) is contributing to slower etch rate due to byproduct formation depending on CD → causing left-right and top-bottom non uniformity
COR SiGe:Si etch: “cavity” and “channel release”

<table>
<thead>
<tr>
<th></th>
<th>Incoming</th>
<th>POST Etch</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET/cyc</td>
<td>No process</td>
<td>Cavity etch</td>
</tr>
<tr>
<td>Non-Tilted</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>Ge% for SiGe = 20%</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>Overlay comparison with incoming</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>Tilted</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
</tbody>
</table>

Summary:
- SiGe: Si etch selectivity > 50:1
- No SiN HM loss
- ER = 70nm/min
- SiGe etch front is square

Data based on alternate test structures
COR SiGe:Si etch: annealing effect

<table>
<thead>
<tr>
<th></th>
<th>Incoming</th>
<th>POST etch</th>
</tr>
</thead>
<tbody>
<tr>
<td>no process</td>
<td>Without</td>
<td>WITH</td>
</tr>
<tr>
<td>Non-Tilted</td>
<td></td>
<td>anneal</td>
</tr>
</tbody>
</table>

Ge% for SiGe = 20%

1. Steam anneal 500C 2hrs
2. RTP 850C 1min
3. RTP 850C 5s

Summary:
- Anneal affects the SiGe ER significantly
- Anneal also reduces the SiGe:Si selectivity at the SiGe-Si interface →
 - resulting in Si loss
 - meniscus etch front

Data based on alternate test structures
Selective Si etch for Nanowire application

Partial release:
- Si etch = 5-6 nm (each side, total = 10-12 nm)
- SiGe loss < 1 nm
- Etch target and uniformity > 5 A
- Square SiGe etch front

Full release:
- Si etch ~ 25 nm (each side, total ~ 25 nm)
- SiGe loss < 1 nm

The above data is on blanket films
COR Si:SiGe etch: etch time optimization

<table>
<thead>
<tr>
<th>ET/cyc</th>
<th>Incoming</th>
<th>POST Etch</th>
</tr>
</thead>
<tbody>
<tr>
<td>No process</td>
<td></td>
<td>90S</td>
</tr>
<tr>
<td>Non-Tilted</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>Ge% for SiGe = 20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilted</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
</tbody>
</table>

Summary:
- **Si: SiGe etch selectivity > 10:1**
- No SiN HM loss
- ER = 7nm/min
- Si etch front is required further improvement
- Post etch surface is smooth
COR SiN spacer etch

Selective SiN spacer etch:
- Required SiN:Si etch selectivity > 25:1 (no Si loss)
- Required SiN:SiGe etch selectivity > 25:1 (no SiGe loss)

Summary:
- **SiN**: SiGe/Si etch selectivity > 50:1
- No Si loss
- SiN still preserved on SiGe layers
COR Selective dummy poly (a-Si) pull

 Dummy poly removal:
• Extremely selective Si etch ~100-200nm
• No SiN loss or SiO2 loss

Device structure

Test structure
Nanosheet Selective Etches: Updated

Step 1: Spacer formation

Step 2: Fin recess

Step 3: Cavity etch

Step 4: Inner spacer formation

Step 5: SD EPI

Step 6: CESL/ILD0

Step 7: Dummy poly/OX removal

Step 8: Channel release

Step 9: HKMG

Fin recess

Cavity etch

Inner spacer formation

Dummy poly removal

Test structure

Channel release
Conclusion

- **Dry plasma free** etches are advantageous & crucial for Nanowire/CFET integrations applications, due to:
 - High etch selectivity, inherent from the etch mechanism
 - No plasma damage
 - Aspect ratio dependency
 - Cyclic process (potential self limiting capability)