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Outline 

•  Gallium Nitride Power and RF Market 
•  What’s so unique about Nitrides? 

–  POLARIZATION! 
–  Formation of 2D Electron Gas 
–  Surface Defects – the good with the bad 
–  Threshold voltage 

•  Surface and Interface case studies 
–  ALD High k dipole formation 
–  Surface and Heterostructure interface charge trapping 
–  Ohmic Contacts 

•  Conclusion 



K. Shinohara, et al. IEEE Transactions on 
Electron Devices doi:10.1109/TED.

2013.2268160 
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Johnson Figure 
of Merit 

Smaller, tougher, faster, & more efficient power systems 

 

Why GaN? 

Baliga Figure of 
Merit 





Background - GaN 

•  Wurzite Structure 
•  Spontaneous 

Polarization 
–  Electronegativity 
–  Asymmetric 

•  Piezoelectric 
Polarization 
–  Strain 

•  Wide Band gap 



•  These polarization vectors can lead to two 
dimensional electron or hole gases (2DEG or 
2DHG) at III-Nitride heterointerfaces 
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Fundamental Physics 
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Surface States and interface 
problems with GaN 



Because 2DEG exists at 
equilibrium… 
 
...already on! 



These impact RF tremendously 

Appl. Phys. Lett. 78, 2169 (2001); doi: 
http://dx.doi.org.ezproxy.library.tamu.edu/
10.1063/1.1363694 

As the channel is turned on, trapping of electrons to the top interface decrease 
the virtual gate potential over very short (ns) time 
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Background – Cleaning GaN 

•  Cleaning Procedures 
–  aq-HCl with or without anneal 

•  N-deficiency and Chemisorbed Cl- 
•  Annealing – lower concentrations of O, Cl, and C 

–  aq-HF with or without anneal 
•  Chemisorbed F- 
•  Annealing – lower concentrations of O, F, and C 

–  Chemical Vapor Cleaning (CVC) using NH3 at ≈ 900°C 
•  “Atomically” clean surface 



Band Offset Measurements of GaN 
(0001) – dielectric interfaces 

•  Experimental Set-up 
–  aq-HCl Clean GaN 

•  Cleaned using HCl, rinsed with 
water and dried  

–  HfO2/GaN 
•  3 nm ALD HfO2  with RTP  

–  Al2O3/GaN 
•  3 nm ALD Al2O3 with RTP 

–  XPS, UPS and TEM 

GaN 

Al2O3/GaN 

HfO2/GaN 

gE-W-h  νχ =
Photon 
Energy 

Spectra 
Width Bandgap Electron 

Affinity 
And… 



XPS analysis of GaN (0001) –  
*find overall shift in N and/or Ga 
with additional of each layer 

Ga 3d XPS N 1s XPS 

GaN 

Al2O3/GaN 

HfO2/GaN 



Band Offset Measurements of aq-
HCl cleaned GaN (0001) 

•  VBM = 3.5 eV, Χ = 4.1 eV 
•  Downward band bending 

~ 0.9 eV 
–  Ga dangling bonds or N-

vacancies 
 



Band Offset Measurements of GaN 
(0001) – HfO2 

•  No additional band 
bending 
–  ∆Ga 3d ≈ ∆N 1s ≈ 0 eV 

•  Within error 

–  Eg(HfO2) = 5.8 eV  
–  CBO = 4.25 eV 
–  VBO = -1.85 eV 

•  ∆ = 1.6 eV 



Band Offset Measurements of GaN 
(0001) – GaON 

•  Does an interfacial layer effect the calculated 
dipole at the GaN/HfO2 interface? 
–  Band offset measurements of thermally grown GaON 

on GaN 

•  Experimental Set-up 
–  aq-HCl Clean GaN 

•  Cleaned using HCl, rinsed with water and dried  
–  GaON/GaN 

•  800 °C for 30 min with Dry O2 
•  ~ 3 nm thermal GaON 

•  XPS/UPS analysis 
Interface  

layer 



Band Offset Measurements of GaN 
(0001) – GaON 

•  aq-HCl GaN 
–  VBM ~ 3.5 eV, Ionization 

Energy = 7.45 eV 

•  GaN/GaON 
–  VBM ~ 7.4 eV below GaN, 

Ionization Energy = 9.55 eV 
•  Similar shape and width to 

previously published work 
•  Increase in Ionization Energy 

is similar to previously 
published work on the 
oxidation of AlGaN 



Band Offset Measurements of GaN 
(0001) – GaON 

GaN 

GaON/GaN 

N 1s XPS Ga 3d XPS 



Band Offset Measurements of GaN 
(0001) – GaON 

•  Assume all shifts are 
due to changes in 
bonding 

•  Eg(GaON) = 4.6 eV  

•  CBO = -2.7 eV 

•  VBO = 3.9 eV 

•  ∆ = -1.8 eV 



Ab initio Analysis of the Interactions of 
Hydrolyzed GaN Clusters with TEMAH 

•  In two cases a Ga-N(CH2CH3)(CH3) bond formed 
–  Possible mechanism that forms an interfacial oxide 

during ALD HfO2 on GaN  
–  No such bond formed during testing of the interactions 

of TMA and hydrolyzed GaN 

Interface  
layer 
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C-V of dielectric-gated 
AlGaN/GaN 
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Interesting Shift in C-V  



Ga1+ Oxynitride State -0.5 eV from core 
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Baseline Performance (5/6) 
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•  Methodology 
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•  Methodology – Conductance Method 
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Gate Stack – Interface Traps (2/5) 
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•  Methodology – Conductance Method 
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Gate Stack – Interface Traps (3/5) 
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•  Methodology – Conductance Method 
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Gate Stack – Interface Traps (4/5) 
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Ohmic contact to the 2DEG…
with AlGaN in the way! 



Selective removal of unreacted 
Ti 

The inclusion of the SiO2 
delamination layer and 15nm of 
Si3N4 fully removes residual Ti 
in the field region and small 
windows (d) SEM of final field 
dielectric stack.  

Titanium etch rate and selectivity 
relative to TiN for different 
dilutions of HF(49%) in DI-H2O 
and BOE (7:1).  



And self-aligned ohmic contact 
transistors to GaN HEMTs! 

Left: Id-Vg at VD = 0.1V with SS = 196 mV/dec, ION/IOFF = 1100, Vth = - 
0.48 V and gm,max = 2.41 mS/mm   
 
Right: RON = 16.98 ohm*mm and ID,sat = 29.85 mA/mm. 



Summary 

•  Nitrides will become more prevalent in Power and 
RF technologies 

•  Ga-N polar bond plays a major role in surface 
properties 

•  Clever use of cleans and device physics give us 
clear pathways to nitride success 


