leti

Chemical Mechanical Planarization Stack Treck

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan -CEA LETI

LETI AT THE GLANCE Founded in 1967

Mass production

Create and transfer innovation to our industrial partners

LETI

50 years

leti

Ceatech

50/ years of Pioneered Innovation @LETI (2017) 50/ years of Moore's Law (2015)

 \rightarrow doubling the number of components on integrating circuit every year (or two..)

Fig. 1 Estimated relative cost per component vs complexity for a typical integrated function for three different times.

Fig. 1 Estimated relative cost per component vs complexity for a typical integrated function for three different times.

Moore's Law

leti

Cost /Transistor Increase below 28nm→ Lithography Double Patterning

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan -CEA LETI

LetiMoore's Law $2 \rightarrow 3.0$ Scale to Go Down \rightarrow Stack to Go Up \rightarrow 3D IntegrationGate & Interconnect DelayInterconnect Delay

« Need Proper Consideration of Wires » > Distances

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan -CEA LETI

LetiStacking Heterogenous DevicesDevice Cleverness

Stacking Heterogenous Devices: \(\gamma\) (Delay, Power, Size) 7 Cleverness

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan - CEA LETI

Lithography Enables Scaling / CMP Enables Stacking

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan - CEA LETI | 10

Building Stacked Devices by Hybrid Direct Bonding Challenges Direct Bonding → Roughness & Clean SiO₂ & Cu Non-Patterned Wafers Hybrid Direct Bonding → Patterned Wafers Topography: Local/Global Conclusion

Stack Trek The Next Generation

Wafer to Wafer Stacking by Hybrid Direct Bonding Technology

- \rightarrow Top Die Contains only Pixels
- \rightarrow Passive Substrate replaced by Advanced Digital CMOS wafer

Manufacturing Flexibility \rightarrow

Different Technology Nodes (Design Rules) for different components

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan -CEA LETI | 12

Stacking Heterogenous Devices

leti

Ceatech

3D Stacked BSI by Hybrid Direct Bonding

LetiDirect BondingDefinition

Process by which two sufficiently **flat** and **clean** surfaces can spontaneously bond to each other without any added adhesive layer, at room temperature

Allows different materials to be stacked together w/o concern for the crystalline relationship to one another \rightarrow SOI wafers (silicon-on-insulators) or innovative engineered substrates.

- Main metal used for CMOS interconnects
- Cost of ownership

Copper/oxide surface direct bonding advantages:

- Very high interconnect density possible.
- Low-temperature process
- Compatibility FEOL/BEOL requirements for a sequential approach

Leti Chemical Mechanical Planarization Challenges for Recreating The Bulk from 2 Mixt Surfaces

Bond 2 Surfaces with

Cu

Barrier

Dielectric

→ Manage Topography

Intimate Surface Contact Needed \rightarrow Planarization @all Spatial λ

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan - CEA LETI | 16

Chemical Mechanical Planarization

leti

ceatech

Challenges for Recreating The Bulk from 2 Surfaces

Surface high frequency micro-roughness \rightarrow key role in the bonding phenomenon,

Low frequency roughness can be accommodated by deformation of each substrate (elastic energy price)

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan -CEA LETI

Leti Cleaning Influence

Cleaning Solution Adapted both to Cu & SiO₂

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan - CEA LETI | 20

Leti Direct Bonding

Cu-Cu Interface Evolution=f(T°C)

ceatech

- Thin copper oxide interfacial layer at the bonding interface
- 200°C, this copper oxide becomes thermodynamically unstable → grain growth→ sealing: XRR
- Bonding interface turns into a grain boundary with a high bonding energy

Chemical Mechanical Planarization

leti

ceatech

Challenges for Recreating The Bulk from 2 Surfaces

Hybrid Direct Bonding

Local Topography Impact Modelisation

Dishing critical: topography doubled \rightarrow negative impact electrical contact

leti

Ceatech

Cohesive tractions effective below threshold value

Hybrid Direct Bonding

Predictive Model

Model

leti

Ceatech

In case of initial dishing in Cu pads

 Definition of the gap after thermal budget

Thermal budget post bonding

Forecast on % pad closure depending on anneal temperature

- Clues for process adaptation with dishing,
- Further models with introduction of grain size and crystal orientation.
- S. Lhostis European 3D Summit 2017

C. Sart ESTC 2016

Predictive Model for the Process of Hybrid Bonding Layer

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan - CEA LETI | 25

LetiHybrid Direct BondingPatterned Wafers DOE

>250 process conditions used \rightarrow pads, slurries, %abrasif %/oxydant, V,P, flow, time...

Very Low Dishing, Uniform vs Cu Pad Shapes & Sizes High Bonding Toughness Obtained

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan - CEA LETI | 27

Chemical Mechanical Planarization

leti

ceatech

Challenges for Recreating The Bulk from 2 Surfaces

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan -CEA LETI | 29

Leti Chemical Mechanical Planarization

Ceatech

Challenges for Recreating The Bulk from 2 Surfaces

LetiHybrid Direct BondingCERTECTPatterned Wafers DOE

- Pattern (PW) to non-patterned (NPW) bonding ->
- → Validation Pattern to Pattern →
 3 wafers/investigated point: 2 bonded,
 1 characterized

	VP/Flow	Time	SiO2/Cu Selec	Post- CMP Topo	PW/NPW
Process Conditions Adjustement	h/a/z	а	а	С	
		b		а	
		С		b	
	k/b/y	d	b	d	
		е		а	
	kiciy	f	С	е	
		е		а	
	l/b/y	а	d	С	
		b		b	
	l/c/y	b	е	С	
	k/b/z	С	f	а	
		d		С	

Costly Process in Patterned Wafers

Improved Diameter Planarization through CMP Process Optimization, validated by Bonding Wave Propagation Time

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan -CEA |

33

3D DieStore: Design Rules Standardization for Interconnect Level

Post CMP Cleaning Conference | Austin 2017 | Viorel Balan -CEA LETI

This Work was performed at STMicroelectronics conjointly with CEA-LETI, EVG and MCL.

Thanks to all the 3D integration team at STMicroelectronics and CEA-LETI.

This work was conceived within, and supported by "Pilot Optical Line for Imaging and Sensing" (POLIS), an ENIAC Joint Undertaking project.

Thank You

Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France www.leti.fr

Design CMP

Space is the Final Frontier

Leti CERTECT Image Sensor Technology Evolution

enue in 33% rev

2009

33% of the revenue in 2013

Currently TSV is the main technology to connect 3D stacked wafers.

Next Step \rightarrow Cu-Cu Hybrid Bonding \rightarrow Could open the way to in pixel connections