

Without measurement there is no control

# Continuous Monitoring of Particles at 20 nm in Critical Semiconductor Process Chemicals

Dan Rodier, Ph.D.

drodier@pmeasuring.com

Surface Preparation and Cleaning Conference March 28, 2017

Confidential and proprietary



# Monitoring chemicals - SEMI & chemical operations

- Semiconductor Operations
  - Incoming quality measurement
  - On-line monitoring of distribution and blending systems
  - Monitor chemical filtration and recirculation
- Chemical Processing & Packaging
  - Qualification of chemical filters and components
  - In-line testing of packaging systems
  - Outgoing chemical qualification testing







# 20 nm particle measurement in chemicals

- React quickly to particle excursions before surface scan or yield data are available
- Improved sample population statistics for tighter process control
- Opportunity for statistical analysis
- Optimize chemical delivery systems from the loading dock to point-ofprocess







# Information from a particle counter

- Level of particle contamination (#/ml)
- Particle contamination events
- Trends in particle contamination
- Particle size distribution
  - Indicate filtration performance
- Poisson's statistics
  - Indicate a systematic or non-random source of contamination
- Fourier transform analysis of cyclic contamination
- Contamination source isolated/addressed





# Why 20 nm?

- Detect particles you can't see with lower sensitivity
- Monitor effectiveness of advanced particle filtration
- Identify changes in batch-to-batch chemical purity
- Characterize and eliminate particle sources
- Protect wafer cleaning processes from upsets in chemical quality



Minimum Particle Size Sensitivity

More particles detected at 20 nm—better process control



# Impact from Recirculation/Filtration - 96% sulfuric acid



• Recirculated flow with filtration very effective at removing larger particles



# Example: 29% Ammonium hydroxide



 Activities in the distribution system can cause significant surges in contamination



# Particle size distribution

- Particle size distribution—plot on log-log and look at slope (-4.186)
- In H<sub>2</sub>SO<sub>4</sub>, PSD slope ranges from -2.5 to -4.5
- In filtered chemistry, filtration mainly determines PSD slope
  - $\circ~$  Filter removal efficiency relative to particle detection efficiency





#### Poisson Statistics Review

 Useful for calculating the probability that a particle will be detected in a sample interval

$$P(k ext{ events in interval}) = rac{\lambda^k e^{-\lambda}}{k!}$$

- k is number of times a particle can be detected in an interval; 0, 1, 2, ...
  - Applies to raw particle counts
- $\lambda$  is the average number of particles per sample interval
- Standard deviation = square root of the mean,  $\lambda^{1/2}$
- Key assumptions
  - Particle detection events occur randomly and independently
  - Events in one sample interval do not affect the probability of particle detection events in the next sample interval
  - The average rate of particle detection events is constant
  - Probability of detection in a sample interval is proportional to sample interval length



Implications of Poisson Statistics

- Ideal particle count rate occurs with Poisson distribution
- Actual particle rate deviates from Poisson distribution when:
  - Particle detection rate does not vary in a random manner
  - Contamination source is not random
- Deviations from Poisson statistics indicates a systematic contamination source
  - Identify & eliminate contamination sources in systems
  - Examples—valve switching, pressure pulses, changes in usage or flow.
- Quantify the <u>deviation from Poisson</u> as:
  - DFP = [ $(\sigma_{\text{measured}}/\lambda^{1/2}) 1$ ] x 100%



#### Ultrapure water system #1

- λ = 353
- $\sigma_{\text{measured}} = 40.8$
- $\lambda^{1/2} = 18.8$
- **DFP** = 117.4%
- System not very clean
  - No ultra-filter
- Definitely not Poisson behavior







#### Ultrapure water system #2

•  $\lambda = 1.34$ 

- $\sigma_{\text{measured}} = 1.25$
- $\lambda^{1/2} = 1.16$
- **DFP = 8%**
- Not the cleanest
- Very stable/well controlled
- Minimal non-random contamination







# Example: Chemical System--31% H<sub>2</sub>O<sub>2</sub>

- λ = 1165
- $\sigma_{\text{measured}} = 768.9$
- $\lambda^{1/2} = 34.13$
- DFP = 2153%
- Definitely not Poisson behavior
- Indicates systematic contamination sources





### Summary of Poisson Analysis

| Parameter               | UPW System #1              | UPW System #2                            | Chemical System H <sub>2</sub> O <sub>2</sub>  |
|-------------------------|----------------------------|------------------------------------------|------------------------------------------------|
| P/ml, <u>&gt;</u> 20 nm | 157                        | 5.96                                     | 1165                                           |
| DFP                     | 117.4%                     | 7.8%                                     | 2153%                                          |
| Configuration           | Old 50 nm Filter, no<br>UF | Electronic System, with Ultra Filtration | 50 nm Filtered $H_2O_2$<br>Distribution System |
| Cleanliness             | Not very clean             | Nominal Cleanliness                      | Very Unclean                                   |
| Stability               | Very Unstable              | Very Stable                              | Extremely Unstable                             |

- Ultrapure water systems
  - Significantly cleaner and better-controlled than chemicals at 20 nm
- Chemical distribution systems
  - Comparatively higher particle levels
  - More systematic, non-random particle sources
    - Large opportunities for improvements!
  - Not as stable as ultrapure water systems



### Next: Fourier Transform Analysis of Particle Contamination

#### Particles/mL Time, min **Fast Fourier Transform Analysis Particle Contamination** Amplitude Contamination Cycle ID'd @ 7/day (~ every 200 minutes) Martha Frequency (#/day)

#### **Particle Contamination in Sulfuric Acid**

- Use FFT to analyze frequency domain of contamination
- Isolate cyclical contamination sources



- Continuous, real-time data react quickly to nanoparticle excursions
- Measure both the contamination level and the deviation from Poisson statistics
  - Quantify impact of system improvements (filtration, pumps, etc)
- Chemical distribution systems generally have large systematic contamination sources
  - Easy to see in 20 nm data
  - Fourier transform analysis to identify cyclic contamination
  - Measure it control it

