

Sulfate ion removal by combined UV and Bake process

Eric Guo¹, Crystal Wang¹, Sandy Qian¹, Mars Wang¹, Harry Zhang¹, Keanu Wu¹, Fei Xu², Wei Jiang², Jun Jin², Jian Shen²

¹Semiconductor Manufacturing International Corporation ²Changzhou Ruize Microelectronics Co., Ltd.

> Introduction

- Experimental & Result
- ➤ Summary & Future study

> Introduction

- Experimental & Result
- ➤ Summary & Future study

	•	•
Photomack	Claaning	requirement
1 HUUUHasa	Cicaming	I CUUII CIIICII
	8	_ · 1 · · · ·

3R

(Remove)

Organics:

Photoresist, Fingerprint, Pellicle glue mark, Airborne organics

Particle

Ions

 SO_4^{2-} , NH_4^+ , $N(CH_3)_4^+$

2P

(Preserve)

Pattern integrity (SRAF)

Material integrity (CrOx / MoSiON / Ru)

SO ₄ ² - sources		
Photomask blank	1. Quartz cleaning process	
manufacture	2. Chrome cleaning process	
process	3. Rework process	
Photomask	1. Photoresist strip process	
manufacture	2. In-process cleaning process	
process	3. Final clean process	
	4. Glue mark removal process	

- > Introduction
- Experimental & Result

➤ Summary & Future study

SO₄²- measurement methodology

Step1: Preheat 500ml DI to 90 degree for 2hours

Step2: Measure the SO₄²⁻ level as baseline

Step3: Soak sample into 90 degree DI for 2hours

Step4: Measure the SO_4^{2-} level as sample

Step5: Difference between sample and base as SO₄²⁻ level for sample

 SO_4^{2-} measurement tool:

Thermo-Fischer ICS2100 with 0.05ppb detection limit

SO₄²⁻ cleaning efficiency by different methods for SPM contaminated mask

Cond. 1: Mask after regular cleaning process (SPM + 80° HDI + SC1)

Cond. 2: Cond. 1 \geqslant 90° HDI soak 2hr \geqslant 80° HDI + SC1

Cond. 3: Cond. 2» 90° HDI soak 2hr» 105° bake + 80° HDI + SC1

Cond. 4: Cond. 3 90° HDI soak 2hr 80° HDI + SC1

Cond. 5: Cond. 4» 90° HDI soak 2hr» 105° bake + 80° HDI + SC1

Cond. 6: Cond. 5 90° **HDI soak 2hr** 80° **HDI + SC1**

Surface Preparation and Cleaning Conference

SO₄²- residue after different cleaning methods for mask treated by traditional cleaning process

SO₄²- residue after different cleaning methods for mask treated by different acid temperature

Surface Preparation and Cleaning Conference

SO₄²- residue after new cleaning process for different masks

Surface Preparation and Cleaning Conference

Surface Preparation and Cleaning Conference

Surface Preparation and Cleaning Conference

> Introduction

- Experimental & Result
- ➤ Summary & Future study

Summary

- ➤ Hot DI rinse has the best SO₄²⁻ removal efficiency comparing to UV, Bake, SC1
- \triangleright Bake process can resurface SO_4^{2-} by diffusion mechanism
- \triangleright Bake process can enhance SO_4^{2-} removal effect of UV process
- By combing UV and Bake process, the SO_4^{2-} removal efficiency improved 70% comparing to POR process. The SO_4^{2-} residue can reach <0.2ppb for PSM mask

Future Study

Further optimize the process parameters for better production control in terms of organics removal, particle removal, pattern damage prevention, phase change minimization, CD loss minimization, etc.

Acknowledgements

- 1. Sponsored by Project of Shanghai Municipal Commission of Economy and Informatization (2016 first breakthrough and demonstration applications of high-end smart equipment in Shanghai)
- Management and technical support from Semiconductor Manufacturing International Corporation and Changzhou Ruize Microelectronics Co., Ltd.

Thank You!