Sulfate ion removal by combined UV and Bake process Eric Guo¹, Crystal Wang¹, Sandy Qian¹, Mars Wang¹, Harry Zhang¹, Keanu Wu¹, Fei Xu², Wei Jiang², Jun Jin², Jian Shen² ¹Semiconductor Manufacturing International Corporation ²Changzhou Ruize Microelectronics Co., Ltd. > Introduction - Experimental & Result - ➤ Summary & Future study > Introduction - Experimental & Result - ➤ Summary & Future study | | • | • | |------------|----------|-----------------| | Photomack | Claaning | requirement | | 1 HUUUHasa | Cicaming | I CUUII CIIICII | | | 8 | _ · 1 · · · · | 3R (Remove) **Organics:** Photoresist, Fingerprint, Pellicle glue mark, Airborne organics **Particle** **Ions** SO_4^{2-} , NH_4^+ , $N(CH_3)_4^+$ 2P (Preserve) **Pattern integrity** (SRAF) **Material integrity** (CrOx / MoSiON / Ru) | SO ₄ ² - sources | | | |--|--------------------------------|--| | Photomask blank | 1. Quartz cleaning process | | | manufacture | 2. Chrome cleaning process | | | process | 3. Rework process | | | Photomask | 1. Photoresist strip process | | | manufacture | 2. In-process cleaning process | | | process | 3. Final clean process | | | | 4. Glue mark removal process | | - > Introduction - Experimental & Result ➤ Summary & Future study ## SO₄²- measurement methodology Step1: Preheat 500ml DI to 90 degree for 2hours Step2: Measure the SO₄²⁻ level as baseline Step3: Soak sample into 90 degree DI for 2hours Step4: Measure the SO_4^{2-} level as sample Step5: Difference between sample and base as SO₄²⁻ level for sample SO_4^{2-} measurement tool: Thermo-Fischer ICS2100 with 0.05ppb detection limit # SO₄²⁻ cleaning efficiency by different methods for SPM contaminated mask Cond. 1: Mask after regular cleaning process (SPM + 80° HDI + SC1) Cond. 2: Cond. 1 \geqslant 90° HDI soak 2hr \geqslant 80° HDI + SC1 Cond. 3: Cond. 2» 90° HDI soak 2hr» 105° bake + 80° HDI + SC1 Cond. 4: Cond. 3 90° HDI soak 2hr 80° HDI + SC1 Cond. 5: Cond. 4» 90° HDI soak 2hr» 105° bake + 80° HDI + SC1 **Cond. 6: Cond. 5** 90° **HDI soak 2hr** 80° **HDI + SC1** ### Surface Preparation and Cleaning Conference # SO₄²- residue after different cleaning methods for mask treated by traditional cleaning process # SO₄²- residue after different cleaning methods for mask treated by different acid temperature Surface Preparation and Cleaning Conference ### SO₄²- residue after new cleaning process for different masks Surface Preparation and Cleaning Conference Surface Preparation and Cleaning Conference Surface Preparation and Cleaning Conference > Introduction - Experimental & Result - ➤ Summary & Future study ### **Summary** - ➤ Hot DI rinse has the best SO₄²⁻ removal efficiency comparing to UV, Bake, SC1 - \triangleright Bake process can resurface SO_4^{2-} by diffusion mechanism - \triangleright Bake process can enhance SO_4^{2-} removal effect of UV process - By combing UV and Bake process, the SO_4^{2-} removal efficiency improved 70% comparing to POR process. The SO_4^{2-} residue can reach <0.2ppb for PSM mask ### **Future Study** Further optimize the process parameters for better production control in terms of organics removal, particle removal, pattern damage prevention, phase change minimization, CD loss minimization, etc. # Acknowledgements - 1. Sponsored by Project of Shanghai Municipal Commission of Economy and Informatization (2016 first breakthrough and demonstration applications of high-end smart equipment in Shanghai) - Management and technical support from Semiconductor Manufacturing International Corporation and Changzhou Ruize Microelectronics Co., Ltd. #### Thank You!