

Mechanistic and Electrochemical Aspects of Copper Post CMP Cleaners for 5-7 nm Nodes

Michael White, Daniela White, Volley Wang, Jun Liu, Elizabeth Thomas, Don Frye, Ruben Lieten, Thomas Parson and Atanu Das

Entegris Surface Preparation and Integration 7 Commerce Dr.
Danbury, CT 06877
michael.white@entegris.com

WHAT IS CMP (CHEMICAL MECHANICAL PLANARIZATION)?

Source: International Roadmap for Semiconductors ITRS press conference, Dec 2004, 25.

Source: http://www.azom.com/article.aspx?ArticleID=12527

Layers/Materials that need to be Cleaned

- 1. Copper/barrier Ta, TaN, TiN, Co, Ru, Mn
- 2. Tungsten
- 3. Cobalt (bulk)
- 4. Aluminum
- 5. Dielectrics (including CeO₂ polishing)
 - TEOS, Si₃N₄, Low-k dielectric, SiC (SiOC, SiON, ...), Polysilicon, Single crystal silicon (wafer, various doping)

Challenges in Post CMP Cleaning

- 1. Variety of CMP slurry particle types
 - Silica (native, surface treated + or -)
 - Al₂O₃, CeO₂, TiO₂, ZrO₂, SiC, diamonds
- 2. Organic residue
 - 1. Corrosion inhibitors (BTA, ...)
 - 2. Dishing/erosion/selectivity additives (polymers, surfactants, small molecules)
 - 3. Rate additives
- 3. Pad debris
- 4. Plating additives

PERFORMANCE GOALS FOR POST-CMP CLEANERS

- 1. Best in class defectivity
 - 1. Very low particle defects (silica, ceria, alumina, ...)
 - 2. Greater challenges arising as particle sizes decrease
 - 3. Low organic residue (Cu-BTA or other thick film formers, W or other metal inhibitors, pad debris, plating additives, ...)
- 2. Very low or no interfacial or surface metal/barrier corrosion or recess
 - 1. Advanced nodes <10 nm
 - 2. Low galvanic corrosion
- 3. Uniform, smooth etching with low roughness
 - 1. Affects thresholds for defectivity measurements
 - 2. No attack on low-k dielectric/dielectric loss
- 4. Low metallic impurities on wafer ($<10^{10}$ atoms/cm²) on dielectrics
- 5. Good buffering/no brush interactions to avoid ring scratches

THE RATIONAL DESIGN OF A POST CMP CLEANER PLANARCLEAN® AG COPPER CLEANING

PlanarClean® AG – Advanced Generation Copper Cleaning Mechanism **Cleaning additive** disperses SiO₂ silica and organic residue and prevents reprecipitation **Etchant** for controlled, **High pH** leads to charge Corrosion **Organic additive** uniform CuO_x repulsion between negatively inhibitor 4 attacks and dissolution to undercut charged silica and negative package controls removes Cucopper oxide surface particles galvanic organic residue corrosion SiO₂ SiO₂ SiO₂ Cu CuOx Cu(0)

PLANARCLEAN® AG PREVENTS SILICA AGGREGATION

- Particle adhesion mechanisms
 - Physisorption (van der Waals attraction increases with PS)
 - **Electrostatic** attraction or repulsion (zeta potential)
 - Chemisorption (chemical reaction particle-surface)
 - Capillary condensation

Dispersed particles
Highly negatively charged
No particles agglomeration

Zeta Potential

$$\zeta = 4\pi\gamma(\nu/E)/\epsilon$$

DEFECTIVITY CORRELATED TO CHARGE REPULSION BETWEEN SILICA PARTICLES

Zeta potential of all AG formulations is highly negative

^{1.} White, M. L. et al, Mater. Res. Soc. Symp. Proc. 991, 0991-C07-02 (2007)

^{2.} Hedge, S. and Babu, H. V. 2Eelectrochem. Soc. St. Lett. V7, pp. 316-318 (2008)

^{3.} White , M. L. et al. Mat. Sc. For. 1249 E04-07 (2010).

BREAK-UP AND DISPERSION OF Cu(I)-BTA COMPLEXES

Cu-BTA Film Removal for Various Cleaners

Additive tailored to attack Cu(I)BTA and similar films

- Fast kinetics
- Thermodynamically favored
- (Higher Cu binding constant than BTA)

Cu(I)-BTA can redeposit if Cu is not properly complexed or dispersed

UV-VIS USED TO PREDICT OPTIMUM COMPLEXANT AND LIGAND CONCENTRATION

Ligands complex copper as soluble Cu(II) and prevent redeposition as CuOx defects or reprecipating BTA

PLANARCLEAN AG: LOWER DEFECTS THAN COMPETITORS

Additive forms weakly interacting film that prevents silica (re)attachment

ELECTROCHEMISTRY REVEALS PLANARCLEAN® AG EXHIBITS IMPROVED CORROSION PERFORMANCE

Co OCP < Cu OCP⁻:
Co not protected

 $0.5O_2 + H_2O + 2e^- \rightarrow 2OH^-$

Co protected (Cu 1.210 Å/min)

Copper

Cobalt

Nearly zero galvanic corrosion (Cu 0.078 Å/min)

Very low galvanic corrosion (Co 0.270 Å/min)

Controlled Electrochemical properties

- ✓ Ligands to control potential gap
- ✓ Passivation to modify resistivity

IMPEDANCE SPECTROSCOPY SHOWS THAT AG COPPER INHIBITOR IMPROVES Cu PASSIVATION

PLANARCLEAN® AG FORMULATIONS PROVIDE BETTER PASSIVATION ON BOTH Cu AND Co

Impedance Spectroscopy

Additional Novel Cu Inhibitor Improves Cu Passivation

When
$$\omega \to 0$$

$$Z' = R_{\Omega} + \frac{R_{ct} + \sigma \omega^{-1/2}}{(\sigma \omega^{1/2} C_{dl} + 1)^2 + \omega^2 C_{dl}^2 (R_{ct} + \sigma \omega^{-1/2})}$$

$$Z' = R_{\Omega} + \frac{R_{ct} + \sigma\omega^{-1/2}}{(\sigma\omega^{1/2}C_{dl} + 1)^{2} + \omega^{2}C_{dl}^{2}(R_{ct} + \sigma\omega^{-1/2})^{2}} \qquad Z'' = -\frac{\omega C_{dl}(R_{ct} + \sigma\omega^{-1/2})^{2} + \sigma^{2}C_{dl} + \sigma\omega^{-1/2}}{(\sigma\omega^{1/2}C_{dl} + 1)^{2} + \omega^{2}C_{dl}^{2}(R_{ct} + \sigma\omega^{-1/2})^{2}} a$$

Ref:

- 1. Wang, et al. SPIE Beijing 2016 Conf. Proc.
- 2. Bard, A. J. Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Wiley and Sons 2001

ELECTRON MICROSCOPY SHOWS SIGNIFICANTLY IMPROVED Cu/Co CORROSION PERFORMANCE FOR PLANARCLEAN® AG

SEM on Sematech® 754 Wafers

TEM on 45 nm Cu/Co Wafers

IMPROVED CORROSION ADDITIVES REDUCE SURFACE ROUGHNESS BY 2-4×

CONCLUSIONS

- Charge repulsion shown to be a key driver towards cleaning performance
- Rate of attack on Cu(I)-BTA polymer, dispersion and complexation important for removal and preventing redeposition of organic residues and particles
- OCP gap must be minimized by optimal ligand selection to minimize galvanic corrosion
- Impedance spectroscopy and Tafel plots have been used to Optimize corrosion inhibiting package
- Very low Cu roughnesses can be obtained with the correct inhibitor (4 Å)

