

SPCC POST-CMP CONFERENCE

High Performance, Ceria Post-CMP Cleaning Formulations for STI/ILD Dielectric Substrates

Daniela White*, PhD – Sr. Principal Scientist Atanu Das, PhD – Scientist Thomas Parson, PhD – Scientist Michael White, PhD – Director, Post-CMP Development

ENTEGRIS Inc., R&D Surface Preparation and Integration 7 Commerce Drive, Danbury CT 06810 Ph: 203-739-1470, daniela.white@entegris.com

OUTLINE

- Development of a low pH and high pH family of efficient ceria cleaners for STI and ILD dielectric surfaces (PETEOS, SiN, SiC, thermal oxide, etc.), PlanarClean[®] AG Ce-XXXX
- Mechanistic considerations specific to PlanarClean AG Ce-XXXX formulation design
 - Understanding CeO₂ surface chemistry and CeO₂-SiO₂ interactions: Raman, FTIR
 - Ce⁴⁺/Ce³⁺ oxidation state characterization: UV-VIS, Raman, potentiometric titrations
 - Ce^{4+/3+} impact on the ceria cleaning mechanism
- Ceria particle defect count results by SEM, Dark field Microscopy (DFM) and ICP data on dielectric surfaces cleaned with PlanarClean AG Ce-XXXX formulation
- Conclusions and path forward

WHY FORMULATED CERIA CLEANERS VS. COMMODITY?

- EHS/Safety concerns with traditional cleans (hot SPM, dHF, SC-1, TMAH + dHF)
- 2. One-step clean process requirement for throughput improvement
- 3. Need for improved particle removal
- 4. Need for improved metal removal
- 5. No damage to dielectric substrates

CERIA POST-CMP CLEANING FORMULATION – MECHANIC DESIGN CONCEPT

Formulation Design Options

- High pH hydrolysis of -Ce-O-Si- bonds by HO⁻ nucleophilic attack to Ce⁴⁺ plus additives needed to stabilize –Ce-OH species and prevent re-deposition
- High pH partial etch/dissolution of the surface –Si-O-Ce- groups plus redeposition prevention
- Bond-breaking additives, followed by CeO₂ complexation, particles stabilization and dispersion

Ce-O Bond-Breaking Mechanisms

INTERACTIONS OF ORGANIC MOLECULES WITH CERIA SURFACE AND SURFACE CHARGE VS. PH

- Surface modified CeO₂ particles in the CMP slurries: positive or negative surface charge
- Particle size: 15–200 nm
- Need to understand CeO₂ surface chemistry and types of interactions with the dielectric surfaces
- Six different types of CeO₂ particles tested can we design a universal cleaner?

Various CeO₂ Particles (A-F) Tested

©Entegris

TYPES OF CeO₂ SURFACE GROUPS

A. Hydroxyl groups by FTIR¹ and titration

PK_{a3}: <3- most acidic

6 1. Christoph T. Nottbohm, Christian Hess, Catalysis Communications 22 (2012) 39–42

TYPES OF CeO₂ SURFACE GROUPS

B. Carbonates on reduced and stoichiometric ceria nanoparticles² (RAMAN)

2. E. E. Benson, C. P. Kubiak, A. J. Sathrum, and J. M. Smieja, Chemical Society Reviews 38, 89 (2009).

DIFFERENT CLEANING FORMULATIONS FOR DIFFERENT CERIA SURFACE CHEMISTRIES?

Particles E, F

- More acidic surface, partially hydroxylated
- Small amount of surface water H-bonded
- Surface exposed –OH for -Si-O- condensation
- Stronger Ce-O-Si bonds, difficult to break/clean

Particles B, C, D

- More basic surface, more hydroxylated
- Outer-sphere shell of H-bonded water
- Reduced surface reactivity
- Weaker Ce-O-Si bonds, easier to break

©Entegris

CERIA REACTS WITH H₂O₂ BY BOTH REDUCTION AND OXIDATION MECHANISMS

 $\begin{aligned} \text{CeOH}^{3+} + \text{H}^{+} + \text{e} & \rightarrow \text{Ce}^{3+} + \text{H}_2\text{O} \dots \text{Ered} = +1.715 \text{ V} \\ \text{H}_2\text{O}_2 & \rightarrow 2 \text{ H}^{+} + \text{O}_2 + 2 \text{ e} \dots \text{Eox} = -0.695 \text{ V} \\ \text{Ered} + \text{Eox} > 0, \text{ reaction can proceed} \end{aligned}$

Reduction of Ce^{4+} to Ce^{3+} Oxidation of H_2O_2 to O_2

Ce³⁺ + H₂O → CeOH³⁺ + H⁺ + e ... Eox = -1.715 V H₂O₂ + 2 H⁺ + 2 e → 2 H₂O ... Ered = +1.776 V Eox + Ered > 0, reaction can proceed

> Oxidation of Ce^{3+} to Ce^{4+} Reduction of H_2O_2 to H_2O

Commodity cleaners as controls

- **SC-1** H₂O:**H₂O₂**:NH₃ (1:1:5)
- SPM − H₂SO₄:H₂O₂ (1:4), T > 100°C

RAMAN SPECTRA FOR BIG CERIA PARTICLES C (>100 nm) IN REACTION WITH H₂O₂/SC-1

No changes on the surface ration Ce^{4+}/Ce^{3+} upon addition of SC-1/H₂O₂

 $Ce^{4+} + H_2O_2 \longrightarrow Ce^{3+}$

Ceria C + H_2O_2

RAMAN SPECTRA FOR SMALL CERIA PARTICLES A (15 nm) IN REACTION WITH $H_2O_2/SC-1$

- Reduced fluorite Ce⁴⁺O₂ surface species
- Vo.. Vacancies
- Peroxo/reduced Ce³⁺ species

+ H_2O_2 Ce³⁺ \rightarrow Ce⁴⁺

- Fully oxidized Ce³⁺ to Ce⁴⁺ (only peroxo-Ce⁴⁺ species)
- No Vo.. vacancies
- No remaining Ce4+-O2--Ce⁴⁺ fluorite structure
- No remaining reduced peroxo-Ce³⁺ species

THE NEGATIVE EFFECT OF H₂O₂ IN COMMODITY CLEANERS ON DIELECTRIC SUBSTRATES

SEM-EDX

• S spherical deposits from peroxymonosulfuric acid

- PETEOS surface damaged after H₂O hot rinse
- PlanarClean AG Ce-XXXX-1 and -3 leave very clean, undamaged PETEOS surfaces

PETEOS SURFACE DAMAGE POST-SPM AND SC-1 CLEANED & POST-RINSED WITH HOT WATER

Damaged/etched surface

PETEOS/Ceria E/(dHF + SC-1 + SPM)

Commodity cleaners such as hot SPM and SC-1 potentially damage and leave agglomerated ceria particles and residue on dielectric surfaces

Agglomerated ceria particles

PLANARCLEAN AG CE-XXXX FORMULATION ADDITIVES LIST – FUNCTION AND MECHANISM

Component	Function	Mechanism
A	Non-TMAH pH adjustor	 Provides the hydroxyl anions and adjust pH needed for surpassing CeO₂ pH_{IEP} Ensures negative surface charge on both dielectric surface and ceria & organic contamination, by being adsorbed on inorganic and organic residues.
В	Complexing reagents Package	 Adsorption at the ceria surface Stabilization of ceria particles via electrosteric repulsion, preventing agglomeration and re-precipitation
С	Bond-breaking reagent	- Ce - O - Si – <mark>C - Ce – OH + HO – Si -</mark>
D	Cleaning Additives Package	 Interacts with particles and dielectrics surfaces to prevent particles aggregation and organics re-deposition

EXPERIMENTAL PROCEDURE

Entegris

FORMULATION DEVELOPMENT (PERFORMANCE = CERIA CONTAMINATION AFTER CLEANING)

Dark Field Microscopy Data

2nd generation cleaner: 3.5× more efficient than SC-1 and 2× than the 1st generation

3RD GEN PLANARCLEAN AG CE-XXXX-2 – 150× BETTER CLEANING PERFORMANCE VS. SC-1 (1:1:5)

Developed cleaner showed extremely good performance – 150× better than SC-1

SEM AND ICP-MS CHARACTERIZATION

Process: Beaker dip/PETEOS/Particle C

CMP/Ceria Slurry/ PlanarClean AG Ce-XXXX-2

- ICP-MS supports the dark field microscopy data and it shows >150× improvement over SC-1
- SEM data strongly supports DFM and ICP data

CONCLUSIONS

- Several low-pH and high-pH high-performance ceria cleaning formulation PlanarClean AG Ce-XXXX were developed at Entegris based on in-depth mechanistic understanding on silica-ceria surface interactions
- All ceria cleaning formulations contain complexing reagents, silica-ceria bond breaking reagents and dispersing reagents for particles agglomeration and re-deposition prevention
- Low-pH PlanarClean AG Ce-XXXX-2 and PlanarClean AG Ce-XXXX-3 formulations perform well on dielectric surfaces polished with both low- and high-pH ceria dispersions
- High-pH PlanarClean AG Ce-XXXX-1 ceria cleaning formulations perform best on dielectric surfaces polished with high-pH ceria dispersions
- We demonstrated that commodity cleaners such as hot SPM and SC-1 are the root cause for defective and damaged dielectrics surfaces, also highly contaminated with ceria aggregated particles
- PlanarClean AG Ce-XXXX formulations show improved ceria particles removal vs. commodities by as much as 150× (ICP-MS)

ACKNOWLEDGEMENTS

- Robin Van Den Nieuwenhuizen brainstorming and financial support
- Emanuel Cooper brainstorming and consulting
- Changfeng Chen Raman Spectroscopy
- Michele Stawasz AFM and SEM-EDX
- Mike Deangelo SEM Characterization
- Wonlae Kim ICP-MS measurements
- Mike Owens lab formulations, contact angle measurements
- Cuong Tran marketing advice
- Fadi Coder sales and marketing advice

Entegris[®], the Entegris Rings Design[™], Pure Advantage[™] and PlanarClean[®] are trademarks of Entegris, Inc. ©2017 Entegris, Inc. All rights reserved.