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1. Motivation   
2. Study of TiN etching 

• in nanotrenches 
• in nanoholes 
• etch mechanism 

3. Conclusions 



RMG wet etching of WF metal in multi-Vt FinFET at N7 
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Nanotrench with 1-D confinement Nanohole with 2-D confinement 
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Feature nm 

Fin pitch 24 

Fin width 4 

Fin Height  50-70 

Gate Pitch 42 

Gate CD 14-18 

Final Gate Height 
on Fin 25 

Gate Height at 
RMG 105 

 Wet etching still feasible ? 

Coventor view  
(not to scale) 



Overlap of electrical double layers in nanospaces 

 Microchannel 
 
 
 
 
 
 
 
 

 Neutral solution in channel as in bulk 
 Excess of charged ions only in diffuse part of 

EDL to neutralize surface charge 
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 Nanochannel 
 
 
 
 
 
 
 
 

 Overlap of EDLs in channel 
 Depletion of ions with same charge as surface 

in channel  no electroneutrality 

H. Daiguji, Chem. Soc. Rev., 2010, 39, 901. 



 pH shift in 100nm-wide SiO2 channels 
 
 
 
 
 
 
 
 
 
 

 Larger shifts expected in smaller FinFETs 

Impact of EDL overlap on chemical reactions 
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 Etching of SiO2 film in filled nano-slit by 
dHF 
 
 
 
 
 
 
 
 
 

 Decreasing etch rate explained by increasing 
depletion of HF2

-  
 

APM 1:4:20 used in etching of TiN 

D.Bottenus et al., Lab on Chip, 2009, 9, 219. A. Okuyama et al., Solid State Phenom. 2015, 219, 115. 
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TiN etching in filled nanotrenches 



Test structure with filled nanotrenches 
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Nanotrenches covered with 1.5nm ALD HfO2 + 25nm ALD TiN 

Rough TiN surface on top 

10nm SiO2 etch stop layer 

Si 

HfO2  

TiN 

Si 
Columnar structure 

Si TiN 

Seam 

Structures after dHF clean (TiOx etched away)  ~1nm seam 

90nm pitch 
31-35nm CD 

100nm 



TiN etch in nanolines 

8 

Pre-clean: 2min HF 0.5% & etch: APM 1:4:20 at RT 

reference time = 6min 

time = 12min time = 18min 

 Uniform etching 
along the seam 
 fast capillary 
wetting of seam 

 Faster etching in 
the formed trench 
vs. top of lines 

 Very rough TiN 
surface at end from 
columnar structure 
of TiN (non-
uniform etching) 



Faster etch rate in trench vs. top of lines (38%) 
No wetting issue 

TiN etch kinetics 
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Pre-clean: 2min HF 0.5% & etch: APM 1:4:20 at RT 

 TiN etch rate on top = 
0.73±0.01nm/min 

 TiN etch rate in trench 
(h=50nm) = 
1.02±0.05nm/min 

bottom 

top 

h=50nm 

h=80nm 

Low accuracy 
from roughness 
(1 st.dev.) 



TiN etching in nanoholes 



200 nm 

Nanoholes test structure 
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Nanoholes covered with 1.5nm ALD HfO2 + 5nm ALD TiN 

TiN 
 
HfO2 

 FIB-TEM inspection: Uniform TiN deposition from 
top to bottom  

Wide holes (visibly open) Narrow holes (closed?) 
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TiN 
 
HfO2 

Field = reference 

SiO2 

pitch = 90 nm 
CD = 11-27 nm 

30 nm SiN etch stop layer 
3nm pad oxide 

φ =11-27 nm 



TEM 
lamella 

FIB-TEM nanoholes  
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FIB cut 
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TiN/HfO2 

SiO2 

SiN 

HfO2  

TiN 

 In projection the layers on 
front/backside of the hole 
are seen as well,  
decreasing the contrast 

 
 At the bottom the HfO2 & 

TiN are seen in projection 
over the full diameter of the 
holes  higher contrast 

5nm TiN in 15nm hole 

Columnar 
grains in 
TiN film 

50nm 



TiN etching at RT 
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2min HF 0.5% + 3min APM 1:4:20 at RT 
narrow wide 

A little of Ti & N left in wide hole No etching of HfO2  

No etching in narrow 
(closed?) hole 

 Wide holes: >> 50% TiN removed 
 Etch rate in wide hole (>0.9nm/min) > planar film (0.73nm/min) 

Similar results with 9min etch 

EDS maps 

closed? 



0.5min etch: 
partial removal 
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etch rate of planar TiN = 
26nm/min at 65°C 

8.5nm 

~5.5nm 

No etching in narrow hole 
Ti mostly gone in wide 
hole & in the field 

Ti mostly removed in the field 
Ti not clearly detected above 
noise level in the holes 

Nanoholes with 1.5nm HfO2 + 
10nm TiN 

seam 

HAADF-STEM profiles 

HfO2 

closed 

HfO2 

narrow wide 

1.5min etch: 
TiN completely removed 

Narrow hole 

TiN etching at T = 65°C 
2min HF 0.5% + 3min APM 1:4:20 at 65°C 



Etching mechanism 



Etch mechanisms proposed in literature  

1. Oxidation of TiN to TiOx  
       * S. O’Brien et al., Proc. UCPSS, 1996, 205. 
       * A. Philipossian et al., Proc. UCPSS, 1994, 275 

1. by HO. radicals generated in-situ by Ti-catalyzed H2O2 decomposition  
2. by HOO- anions from H2O2 ionization 

2. Dissolution of TiOx by complexation 
1. Complexation by HOO- anion 

in analogy with an established titration method for Ti 
* S. Verhaverbeke et al., Mat. Res. Soc. Symp. Proc. 1997, 477, 447.   

2. Complexation by NH4
+ cation 

in analogy with the cleaning of metallic impurities by APM 
* this work 
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Rate determining step vary depending on authors (marked with *) 



Numerical simulations: Concentration of ions in TiN nanoholes  
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Solution of Poisson-Boltzmann and Poisson-Nernst-Planck equations for APM 1:4:20 at RT 
B.Lu et al., Phys. Rev. E 2012, 86, 011921. Implementation in Comsol.  

 Negative surface charge  cations enrichment and anions depletion 
 Loss of electroneutrality in confined solution for CD < 10-15nm 

5nm 

Relative concentration map of [NH4+] ≈ [H+] 

[NH4
+] ≈ [H+] 

[HOO- ] ≈ [OH- ] 

5nm  

10nm 
15nm 
20nm  

20nm 
 
5nm 

surface charge 
= -10mC/m2 

Z
  (

nm
) 

X (nm) 

Relative concentration profiles 
surface charge = -20mC/m2 

APM: pH~10.5  negative surface charge 



Rate determining step in nanospaces 

1. Oxidation of TiN to TiOx   
1. by HO. radicals generated in-situ by Ti-catalyzed H2O2 decomposition  
2. by HOO- anions from H2O2 ionization 

2. Dissolution of TiOx by complexation 
1. Complexation by HOO- anion 

in analogy with an established titration method for Ti 
2. Complexation by NH4

+ cation 
in analogy with the cleaning of metallic impurities by APM 
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Considering impact of EDL overlap on kinetics 

Faster etch rate in nanolines vs. planar films suggests that complexation by NH4+ is dominant 

Constant etch rate in nanolines a.f.o. time, i.e. at increasing opening, implies that reactions 
with HOO- would also play a role 



Conclusions 



Conclusions  

 No issue found for APM etching of TiN in advanced FinFET’s RMG module, at the 
contrary 
 No wetting issue in narrow openings (~1nm seam after dHF) 
 Faster etch rate in narrow trenches vs. top of structures (~40%) 
 Faster etch rate in open nanoholes vs. top of structures (only qualitative) 
 Closed nanoholes with 10nm TiN cleared by APM@65°C in 0.5-1.5min 

 Learnings on etching mechanism 
 Faster etch rate in nanospaces suggest kinetics dominated by TiOx complexation-dissolution  

by NH4+  
 No dependency of etch rate on opening size in nanotrenches 
 kinetics cannot be described by a single ionic reaction 
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