Aqueous Ammonium Sulfide Passivation and Si_{1-x}Ge_x MOSCaps

Lauren Peckler¹, Stacy Heslop², and Anthony Muscat¹

¹Department of Chemical & Environmental Engineering, University of Arizona

²Department of Chemistry, University of Arizona

Motivation

- Ge and SiGe are alternatives to Si for CMOS devices owing to their smaller bandgap and increased hole mobility.
- Incorporating Ge into SiGe films can be used to tune material properties.
- Ge oxides form readily and the interface contains a high density of defects.
- SiGe with < 50% Ge has been integrated into current Si semiconductor manufacturing.
- SiGe with > 50% Ge has been difficult to integrate.
- Sulfur chemistry is accepted by industry for passivation.

Chemistry on the SiGe surface lead to poor MOSCap performance

Goals

- 1. Remove oxides from SiGe surface and passivate Ge dangling bonds with $(NH_4)_2S$ chemistries to:
 - Reduce interface defects between SiGe and high k dielectric
 - Minimize defects in bulk layer of dielectric
 - Minimize electric oxide thickness
- 2. Compare 25% and 75% Ge substrates

$$Si_{1-x}Ge_x$$
 (x = 0.25)

$$Si_{1-x}Ge_x$$
 (x = 0.75)

Removing Oxides and Forming Ge-S

Remove oxides through wet chemistry clean*

Control Treatment

SC-1: 1:1:500, RT, 2 min UPW, 1 min, Slow dry with N_2 (~30 s)

HF:HCl:H₂O (1:3:300) 5 min

Bond Ge dangling bond to S with $(NH_4)_2S^*$

Treatment

(Control)

 $(NH_4)_2S:HF:HCl:$ $H_{\bullet}O$ (1:0.15:0.15:100)**20** min

*Coupon Size Samples: 1 x 1 cm²

A Study of Two Surfaces and Two MOSCaps

$$Si_{1-x}Ge_x$$
 (x = 0.25)

Surface

~40 nm
$$\updownarrow$$
 Si_{1-x}Ge_x (x = 0.25)
Silicon (p-type)

MOSCap

Au (25 nm)

Ni (50 nm)

Al₂O₃ (10 nm)

Si_{1-x}Ge_x (
$$x = 0.25$$
)

Silicon (p-type)

$$Si_{1-x}Ge_x$$
 (x = 0.75)

Surface

~180 nm
$$\oint$$
 Si_{1-x}Ge_x (x = 0.75)
Silicon (p-type)

MOSCap

Au (25 nm)

Ni (50 nm)

Al₂O₃ (10 nm)

Si_{1-x}Ge_x (
$$x = 0.75$$
)

Silicon (p-type)

$$Si_{1-x}Ge_x$$
 (x = 0.25)

Chemical & Electrical Characterization

On $Si_{1-x}Ge_x$ (x = 0.25) Ge-S not detected with $(NH_4)_2S$ treatment.

Ge-S is detected with acidic $(NH_4)_2S$ (1:100 v/v) treatment, as well as oxides.

Acidic treatment reduces defects and capacitance.

Flatband shift possibly due to thickness of dielectric layer.

$$Si_{1-x}Ge_x$$
 (x = 0.75)

Chemical & Electrical Characterization

On $Si_{1-x}Ge_x$ (x = 0.75) Ge-S and oxides detected after (NH₄)₂S treatment.

Ge-S and oxides correlate to less capacitance.

(NH₄)₂S treatments decrease interface defects at valence band edge for both substrates.

- Control Treatment, 75% Ge
- $(NH_4)_2S$ Treatment, 75% Ge
- ▲ Acidic Treatment, 75% Ge
- Control Treatment, 25% Ge
- $(NH_4)_2S$ Treatment, 25% Ge
- ▲ Acidic Treatment, 25% Ge

Au (25 nm)

Ni (50 nm)

Al₂O₃ (10 nm)

Si_{1-x}Ge_x (x = 0.25)

Silicon (p-type)

Au (25 nm)

Ni (50 nm)

Al₂O₃ (10 nm)

Si_{1-x}Ge_x (x = 0.75)

Silicon (p-type)

Additional Studies on S Desorption, Surface Variation, Repeatability, and Time

Checking S desorption after ALD

Surface variation on $Si_{1-x}Ge_x$ (x = 0.25) observed through D_{it}

Between three sets of $Si_{1-x}Ge_x$ (x = 0.25) MOSCaps D_{it} trend does not hold.

- □ Control Treatment
- \circ (NH₄)₂S Treatment
- △ Acidic Treatment

Three sets of coupons

Interface defects increase with time.

- Control Treatment, Time 1
- □ Control Treatment, Time 2
- $(NH_4)_2S$ Treatment, Time 1
- \circ (NH₄)₂S Treatment, Time 2
- ▲ Acidic Treatment, Time 1
- △ Acidic Treatment, Time 2

Time 2 - Time 1 = 5 months

SEM Image of $Si_{1-x}Ge_x$ (x = 0.25) MOSCap

Control treatment

Pre annealing

Thicknesses for metal layers are not expected.

Metal layers are indistinguishable.

Conclusions

- Ge-S forms on both $Si_{1-x}Ge_x$ (x = 0.25, 0.75) in either the $(NH_4)_2S$ or the $(NH_4)_2S$ + Acid solution.
- Oxides regrow faster on both $Si_{1-x}Ge_x$ (x = 0.25, 0.75) when S is present on the surface.
- D_{it} reduction could be caused by Ge-S bond and/or oxide formation.
- MOSCap repeatability and surface homogeneity varies significantly between the two SiGe substrates.
- Interface defects increase with age on the $Si_{1-x}Ge_x$ (x = 0.25) surface.

Future Work

- Form Ge-S without oxide regrowth by non-aqueous solutions and gas phase deposition.
- Improve D_{it} analysis with series resistance correction.
- Improve metal contact deposition with calibration and switch to thermal deposition.
- Deposit thinner layers of high k to reduce flat band shift.