

<u>Marion Croisy</u>^{a,b,c*}, Cécile Jenny^a, Claire Richard^a, Denis Guiheux^a, Sylvain Joblot^a, Alain Campo^b, Erwine Pargon^c, Nicolas Possémé^b

- ^a STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex, France
- ^b CEA-Leti, 17 avenue des Martyrs, F-38054 Cedex 09, Grenoble, France
- ^c CNRS-LTM, Université Grenoble Alpes, 17 rue des Martyrs, F-38054 Grenoble Cedex, France

* marion.croisy@st.com

Outline

Context

Observation and characterization of blisters

- Blisters characterization (STEM, STEM-EDX and ToF-SIMS)
- Influence of implantation parameters on blisters formation
 - Dopants species (As vs P)
 - Implantation energy and dose

Solutions to avoid blisters formation

- Optimization of dry strip process
- Integration modification

Context

/High Dose Implantation Stripping (HDIS)

 N_2H_2 is the most suitable chemistry for implanted resist stripping in terms of residues removal and low substrate consumption

Limitation \rightarrow blisters formation after several N₂H₂ stripping processes on implanted area

Example of CMOS integration from Spacer Z to SD formation

After LDD and NSD \rightarrow the dry strip chemistry used is forming gas (N2H2 with 3% of H2)

All lithographic rework are based on forming gas

Formation of blisters after several N2H2 processes

Example with P implantation (4keV 1.5^E15 at/cm²)

 After 4 N2H2 dry strip
 5 N2H2 dry strip
 6 N2H2 dry strip

 Image: Constraint of the strip of t

Experimental protocol

Outline

Context

Observation and characterization of blisters

- Blisters characterization (STEM, STEM-EDX and ToF-SIMS)
- Influence of implantation parameters on blisters formation
 - Dopants species (As vs P)
 - Implantation energy and dose

Solutions to avoid blisters formation

- Optimization of dry strip process
- Integration modification

Blisters Characterization / STEM and EDX analysis

STEM cross section views

EDX analysis

- Bubbles are formed near the Si surface in the implanted area corresponding to amorphous Si
- The surface is lifted by the bubbles
- No dopants are detected on the voids left by the bubbles

no implant 2 N2H2 processes P 4keV 2N2H2 processes P 4keV post implantation

Blisters Characterization / ToF-SIMS analysis

Evaluation of plasma diffusion in the Si substrate thanks to H⁻ and SiN⁻ profiles

• No implantation \rightarrow Diffusion of N but not H atoms

 P implantation → Similar N diffusion as for the non implanted substrate But H diffusion is greatly enhanced and an accumulation is observed

H diffusion and accumulation in the amorphized Si created during the implant are responsible for blister formation

Blisters Characterization

/ Influence of implanted specie (As vs P)

What can explain the difference observed between As and P?

Amorphized Si thickness

	Simulated (SRIM) (nm)	Measured (STEM) (nm)
Ρ	18	16
As	14	14

Si is considered amorphous when Si recoils > 3.6atoms/cm³

Different dopants profiles but same Rp

- Higher concentration of Si recoils with As
 → higher amorphization rate
- Thinner amorphized layer for As

Effect of amorphization rate or amorphized layer thickness?

Blisters Post Dry Strip / Influence of implantation energy

11

Amorphized Si thickness (SRIM)

As 5keV	16.4 nm
As 4keV	14 nm
As 3keV	11.4 nm

SRIM simulations

Influence of implantation energy

- Blisters are formed a little earlier with low implantation energies
- At lower energy, the amorphization rate and the amorphized thickness are lower
- Influence of implantation energy on blisters is limited

Blisters Post Dry Strip / Influence of implantation dose

12

	Ν	b of	dry	str	ip p	roc	esse	es	<u>A</u>	morphized Si thicki	<u>ness (SRIM</u>
	1	2	3	4	5	6	7	8		As 3keV 2E15	11.4 nm
As 3keV 2E15										As 3keV 1E15	10.4 nm
As 3keV 1E15											

Outline

Context

Observation and characterization of blisters

- Blisters characterization (STEM, STEM-EDX and ToF-SIMS)
- Influence of implantation parameters on blisters formation
 - Dopants species (As vs P)
 - Implantation energy and dose

Solutions to avoid blisters formation

- Optimization of dry strip process
- Integration modification

14

•	Number of dry strip processes						
Recipe	1	2	3	4	5		
Reference (30s/platen)							
T° ramp + Low P (45s/platen)							
Low P (30s/platen)							

Photoresist coating and lithography

Implant As 3keV 1^E15 at/cm²

Dry strip N₂H₂

Low process pressure and temperature ramp → the blisters formation is delayed compared to reference recipe

With low process pressure only→ the blisters formation is delayed and no residues remain

Blisters Post Dry Strip / Influence of oxide layer

Modification of the stack \rightarrow

- Implantation is made through an thermal oxide layer (55A)
- Implantation step is adapted to have similar dopant profiles

Blisters Post Dry Strip / Influence of oxide layer

16

The blisters are formed sooner if the oxide is removed before stripping

The growth of an oxide layer before implantation allows to delay blisters formation by limiting H diffusion in Si substrate

Conclusions 17

Blisters characterization

 During N2H2 stripping, H atoms diffuse though the amorphous Si layer and accumulate to form a bubble

o N2 also diffuses in the substrate but is not responsible for blistering

Influence of implantation parameters

 Blisters are favored by low implantation dose corresponding to less amorphized Si conditions

Solutions against blistering effect

 Ory stripping process optimization → low pressure allows to delay blisters formation

 o Integration modification → oxide layer growth before the implantation is beneficial in particular because it decreases H diffusion in the substrate during the plasma process

Thank you for your attention

