

Contact cleaning opportunities on single wafer tool

¹L. Broussous^a, ¹S.Zoll, ²H.Ishikawa, ²F.Buisine, ²A.Lamaury,

- ¹ STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles, France
- ² SCREEN SPE Germany GmbH, Fraunhoferstr. 7, 85737 Ismaning, Germany
- a lucile.broussous@st.com

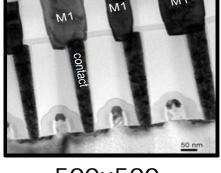
Content

Introduction: Contact Cleaning Challenges

Experimental: Technologies, Materials, Chemistries

Results: Cleaning and Drying performances

Conclusion: New opportunities for contact cleaning & Drying


Contact Cleaning overview

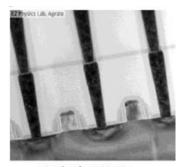
What was contact cleaning?

- A « standard » post-etch clean :
 - Batch sprays and Wet-benches
 - Cleaning process « BEOL like » with EKC solvents
 - Cleaning process « FEOL » with SPM_SC1_SC2

- « usual » recipes : SPM_SC1_SC2_Nanosprays
- New recipes: HF/O3, ...
- Almost same clean what ever the silicide CoSi / NiSi

500x500 nm²

However, a lot of recent evolutions were due to new materials introduction, patterning scheme evolutions, Contact A/R increase


Contact Cleaning Challenges

Cleaning Challenges due to new materials introduction:

- Metal Gate technologies → 28nm FDSOI & Silicide First Architecture
 - → Gate metal etch/corrosion → SPM step removed
 - → SC1 + HCl only is one alternative
- Mix of std contact landing on silicide with contact on sensitive materials :
 - → W in stacked CT or W trenches for 14nm technologies
 - → SPM & SC1 steps not compatible with W
 - → Need to evaluate other solutions

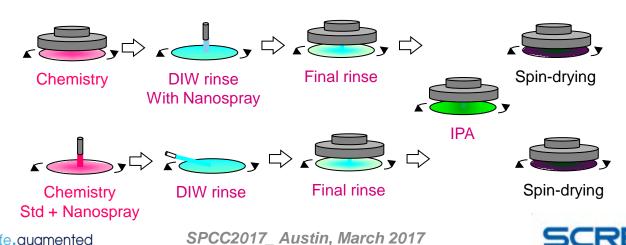
Drying Challenges:

- Q-Time management after cleaning
 - → IPA Drying evaluation

stacked contact

This work aims to:

- compare cleaning efficiency, by using a High Yielding technology
- Investigate IPA Drying for high aspect ratio contacts


Experimental _ Tool & Chemistries

Chemistries & recipes

- Reference clean : SPM _ SC1 _ SC1NS*, std spin Dry
- "SC1": SC1_SC1NS_HCI: std spin Dry & IPA Dry
- "HF02": dHF (0,2%wt.), DIW rinse with NS*, std spin Dry & IPA Dry
- "GLYHF": Mix HF0,025% + Glycolic acid 1% @ 60° C: std spin Dry

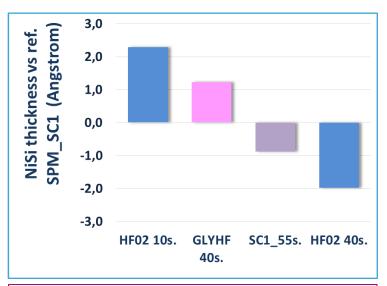
Wet tool & options

- Single wafer cleaning SU-3100
- Central dispense + Nanospray for SC1
- [O2] control over the wafer with Shieldplate @ low position for dHF
- IPA Dry after SC1 or dHF

Experimental _ Materials and Technologies

Wet etch-rate

- NiSi thin film 25nm thick, measured by ellipsometry
- SiO2 thin film (PMD stack), measured by ellipsometry (not shown here)
- TiN, W thin films, measured by 4 point probe resistivity (not shown here)
- Contact CD variation, measured by SEM_CD


Technologies & Tests wafers

Techno type	Silicide type	Contact CD & A/R	Cleaning Process vs SPM_SC1 reference
C014	NiSi (Pt10%)	40nm	HF0,2%
C028	NiSi (Pt10%)	40nm	HF0,2% / GLYHF / SC1_HCL
C040	NiSi (Pt10%)	55nm max A/R = 7	HF0,2% / GLYHF / SC1_HCL

Results _ NiSi thickness & CD Variations

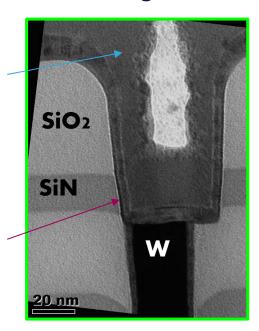
Silicide thickness variation vs Ref. SPM_SC1 (NiSi)

- √ Range -2 to +2 Å
- √ Very small variations vs PoR

Contact CD Variations vs Ref. SPM_SC1:

- ✓ Range -2 to +2 nm
- ✓ SC1 & low HF budget : CD < Ref.
 </p>
- ✓ HF budget
 → : CD > Ref. & CD
 →

CD variation sensitivity depends on technology node and possible adjustment to be done in Litho & Etch

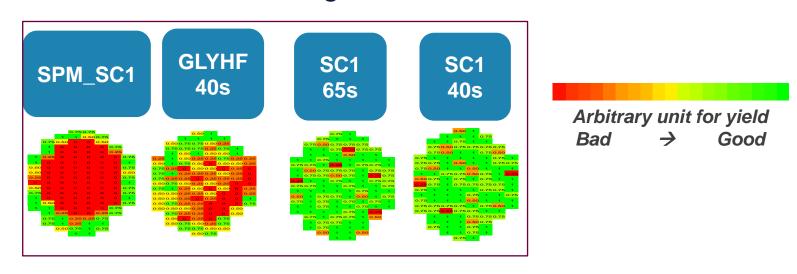


Preliminary Results with HF0,2%

TEM view of 14nm contact landing on W trench, clean HF02, 50s:

Contact filling for TEM lamella preparation

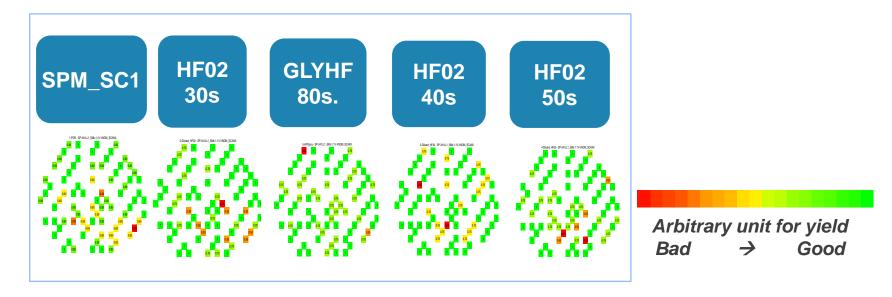
TiN barrier


- ✓ No Oxide over etch vs SiN
- ✓ No degradation of contact profile
- √ No over-etch on W trench

Preliminary Results _ cleaning wo SPM

Example of SRAM Yield mappings for 28nm technology (metal gate)

PoR strongly impacted by voids in Metal gate (metal etch by SPM)

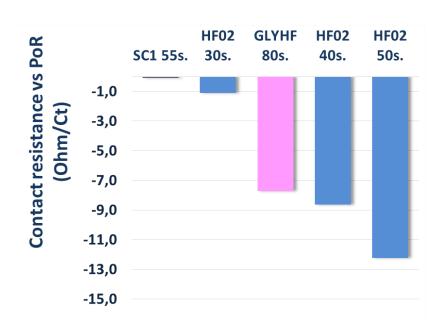

- ✓ SC1 : Best Split
- ✓ GLYHF 40s. Poor cleaning → Yield loss

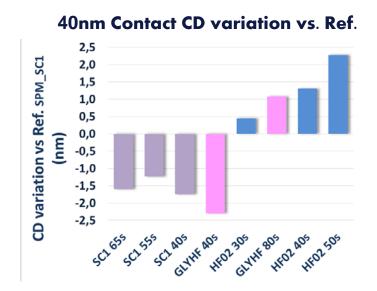
Results: Cleaning efficiency comparison on High Yielding Technology (40nm node)

Example of SRAM Yield mappings for 40nm technology

No materials compatibility concerns → Ok for cleaning comparison

- √ HF0,2% : good yields (30 50sec. Process)
- ✓ GLYHF 80s. = better than 40s.





Results: Cleaning efficiency comparison on High Yielding Technology (40nm node)

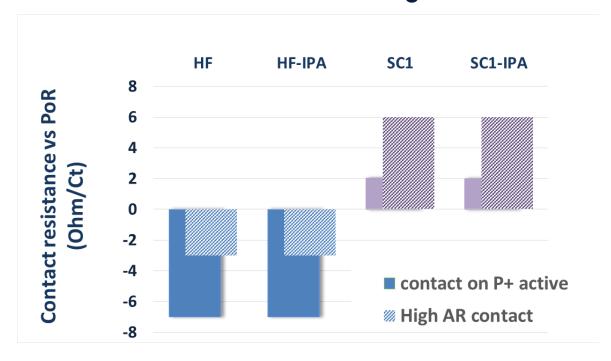
40nm Contact resistance variation

vs. Ref. (Contact on P+ active)

- ✓ No Resistance increase vs PoR → confirm efficient clean
- √ SC1 : No CD Loss & Good efficiency (R = same as PoR)
- ✓ GLYHF & HF02 : Resistance

 well correlated to CD

 ¬



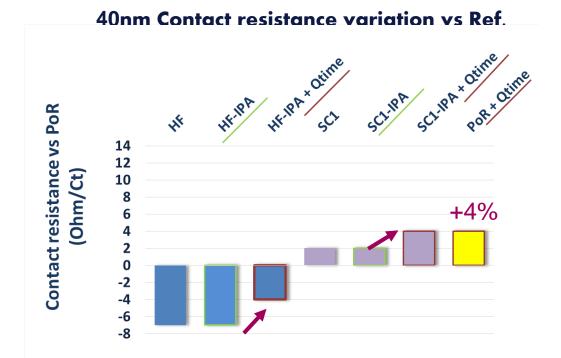
Results: IPA Drying efficiency

40nm Contact resistance variation vs. PoR. Contact std & High A/R contact

NEW Parameters:

- **✓ IPA DRY**
- ✓ Contact A/R

- ✓ No Resistance increase with IPA vs No IPA → No issue
- ✓ IPA dry implementation possible without process degradation



Results: Qtime effect

NEW Parameter :

Qtime WET – TiN

barrier dep

- ✓ No drastic PoR degradation with Qtime (4%) → No clear conclusion (maybe due to physical split effect with few wafers in the Foups)
- ✓ Slight Resistance increase with Qtime (all wet process), same on high A/R contact
- ✓ No specific effect of IPA dry vs Qtime management on this lot

Conclusion

- Single wafer tool improved cycles of learning for developing new cleaning recipes sequences
- New materials / new integration schemes requires changes in traditional wet cleans
 - SPM is no longer compatible
 - Diluted HF is an effective replacement but consideration is required for CD changes
- o IPA drying is compatible although no benefits shown in this work
 - Good candidate for future technology nodes if N2 drying issues arise.

Thank you for your attention.

