

WET CLEAN CHALLENGES IN 22 NM ½ PITCH AND 16 NM ½ PITCH STRUCTURES

E. KESTERS*, Q.T. LE, C. LORANT, X.XU AND F. HOLSTEYNS

Email address: kesterse@imec.be

Address: Kapeldreef 75

3001 Heverlee

Phone: +32 16 288609

OUTLINE

- Introduction
- PERR clean for 22 nm $\frac{1}{2}$ pitch structures:
 - Successful removal of fluorinated residues together with TiN HM
- Impact of dissolved oxygen in dilute HF on metal loss
 - Effect of fluid dynamics, chamber atmosphere and dissolved oxygen concentration in HF on Cu etch
- Prevention of pattern collapse by using hot IPA and SFC (surface functionalizing chemistry)
 - Parameters affecting pattern stability
 - Approaches
 - Method for surface functionalization: typical reaction
 - Impact of SFC on blanket OSG2.55, thermal oxide and 90 nm pitch high AR BEOL trench structures
 - Prevention of pattern collapse on 16 nm ½ pitch wafers after VIM2 etch using hot IPA and SFC: morphological study
- Summary

INTRODUCTION

- What is challenging regarding the PERR step?
 - Remove/ pullback or preserve TiN HM
 - Remove fluorinated polymer residues
 - Compatibility requirements:
 - Cu, Co, W, liner and barrier → not to induce corrosion
 - **PART I**
- I. HF is one of the commonly used chemistries for DD clean
- HF based low dissolved oxygen (<20 ppb for the liquid & 500ppm (air))
- Advanced OSG LK (lower k-value and higher porosity), including the LK damaged layer
- Prevention of pattern collapse
- PART 2
- Transfer from 22 nm ½ pitch towards 16 nm ½ pitch, makes the structures more prone to pattern collapse

innec

3

SUCCESSFUL REMOVAL OF FLUORINATED RESIDUES
TOGETHER WITH TIN HM

PERR CLEAN FOR 22 NM 1/2 PITCH STRUCTURES:

5

umec

IMPACT OF DISSOLVED OXYGEN IN DILUTE HF ON METAL LOSS

INTRODUCTION

- Cross-sectional representation of the two level metal structure (16 nm ½ pitch structure)
- I6nm M2 dual-damascene structures metallized with Copper

Briggs et al., to be presented at IITC, 2017.

- Clean concept transferred from 22 nm ½ pitch to 16 nm ½ pitch structures:
 - Further reduction Cu loss during cleaning sequence required
 - HF based low dissolved oxygen cleans are reported to be crucial for DD cleans

E. Kesters et al., Solid State Phenomena, 1012-0394, Vol. 255,pp. 251-254.

L. Broussous et al., Solid State Phenomena, 1012-0394, Vol. 255,pp. 260-264.

Rinse optimization using dNH_4OH vs. dCO_2 (not discussed)

MATERIALS AND METHODS

SU-3200 platform, SCREEN Single wafer cleaning tool

- Materials:
 - 500 nm blanket ECD Cu

- [HF]: 0.05 0.1%
- DO: 70 3000 ppb
- Process time: 20, 60 and 120 s
- Other variables:
 - ambient oxygen (controlled vs. non-controlled)
 - fluid dynamics (reference vs. improved)

- Characterization:
 - 4-point probe measurement (sheet resistance)

EFFECT OF FLUID DYNAMICS ON CU ETCH

- Copper loss increases with increased DO concentration in dHF solution (70 to 3000 ppb DO)
- Improved fluid dynamics reduces the amount of Cu loss
 - → prevents copper losses towards wafer edge are suppressed, even at increased DO (= 3000 ppb)

If you are not able to control the ambient atmosphere, fluid dynamics can improve the metal compatibility when using dHF

EFFECT OF CHAMBER ATMOSPHERE ON CU ETCH

- Non-controlled ambient combined with low DO 0.05% HF process:
 - It was observed that the Cu etch was higher toward the outer peripheral side of the wafer compared to the controlled ambient.
 - Cu loss increased with dispense time.
- Controlled ambient (low oxygen ambient) combined with low DO 0.05% HF:
 - did not attack bulk Cu, even after 2 min dispense

EFFECT OF DISSOLVED OXYGEN CONCENTRATION IN DHF SOLUTION ON CU ETCH

- Cu loss increased with increasing DO concentration in dHF
- Cu loss with 0.05% HF:
 - ≤ 200 ppb DO: less than I nm Cu loss was observed
 - 3000 ppb DO: Cu loss > 1 nm
 - A similar trend in etching behavior was observed using 0.1 and 0.2% HF (not shown)

The etching behavior of Cu strongly depended on:

- DO concentration and was not affected by the HF concentration (0.1 0.2% range).
- If HF is used for PERR (in combination with formulated chemistries), be aware that DO concentration is low enough

PREVENTION OF PATTERN COLLAPSE BY USING HOT IPA AND SFC (SURFACE FUNCTIONALIZING CHEMISTRY)

PARAMETERS AFFECTING PATTERN STABIL

- E: Young's modulus

- s: space between nearby structures
- Surface chemistry of the dielectric sidewall
- Wet clean chemistry and rinse liquid

PREVENTION OF PATTERN COLLAPSE: APPROACHES

No bending when fully immersed

Capillary force causes bending

Stiction held by surface adhesion

X. Xu et al., ACS Nano 8(1), 885-893 (2014)

M. Sankarapandian et al., Solid State Phenom. 195, 107 (2013)

- Capillary force induces bending
 reduce capillary force such that
 - I. During spin-rinse drying by an IPA final rinse at elevated temperatures

→ Low surface tension liquid: e.g. IPA drying, max 3x reduction in force

Water: γ= 0.072 N/m IPA: γ= 0.021 N/m

- 2. Capillary force can be reduced further by changing the surface energy of low-k lines.
 - This can be done by modification of the structures surface wetting properties by deposition of an organic monolayer providing a contact angle of 90 deg or above
- Reduce collapse force: Modify exposed surface without damaging the low-k

METHOD FOR SURFACE FUNCTIONALIZATION: TYPICAL REACTION

- Restoration of damaged layer is performed by a silane-coupling reaction using organic solvent
- Silylation process
 - Success criteria: reactivity of surface (sidewall and bulk pore wall), solubility of silylating agents in solvent
 - Limited at the surface of the damaged low-k if silylating molecule size > pore diameter
 - Incorporation of silylating molecules in low-k bulk if silylating molecule size < pore diameter</p>
- Use of surface functionalizing agents as part of the rinsing sequence

BLANKET OSG2.55, THERMAL OXIDE AND 90 NM PITCH HIGH AR BEOLTRENCH STRUCTURES

IMPACT OF SFC ON

SURFACE FUNCTIONALIZATION: EXPERIMENTAL

RESULTS

PLASMA-TREATED OSG 2.55

- Negligible change in thickness because of PERR clean
- PERR clean induces a decrease in contact angle of ~ 30 deg
- Thickness remains similar after SFC immersion, while contact angle is slightly increasing with SFC immersion time

SFC shows a limited reaction with plasma-treated OSG 2.55 surface

່ເກາຍເ

RESULTS

THERMAL OXIDE

- Thermal oxide surface is hydrophilic before SFC treatment
- UV/O₂ pre-treatment in order to condition the surface (to increase [OH] on surface)
- Contact angle substantially increase to
 90 deg independent from immersion
 time and surface pre-conditioning
- Without UV pre-conditioning: good surface to start reaction of SFC

SFC: Reactivity thermal oxide >>plasma-treated OSG 2.55

່ເກາຍເ

19

CONTACT ANGLE HIGH A/R 90 NM PITCH BEOLTRENCH STRUCTURE

- Large change in contact angle (> 100deg) after treatment for 10 s in SFC
- SFC present at the surface
- Functionalizing oxide HM is successful

Functionalization of the top surface plays a key role to prevent lines from pattern collapse

ເກາຍເ

WAFERS AFTER VIM2 ETCH USING HOT IPA AND SFC: MORPHOLOGICAL STUDY

PREVENTION OF PATTERN COLLAPSE ON 16 NM 1/2 PITCH

TRANSFER FROM 22 NM 1/2 PITCH TOWARDS 16 NM 1/2 PITCH STRUCTURES

Transfer from 22 nm ½ pitch towards 16 nm ½ pitch:

→ structures are more prone to collapse after POR PERR clean (formulated chemistry + short IPA rinse at RT)

SUMMARY

- I. Impact of dissolved oxygen in dilute HF on metal etch
 - Tuned fluid dynamics reduces copper losses towards wafer edge, even at increased DO (= 3000 ppb) concentrations
 - 2. The Cu loss was also strongly dependent on the chamber atmosphere condition.
 - 3. The etching behavior of Cu strongly depended on the DO concentration and was not affected by the HF concentration (within 0.1 0.2 % range).

Pattern collapse prevention

- 1. Functionalization of the top surface plays a key role to prevent lines from pattern collapse
- 2. How to prevent line collapse for 16 nm ½ pitch structures?
 - I. Increase IPA rinse from RT to 65C
 - 2. CD control: A threshold w.r.t. CD is observed for pattern collapse
 - 3. Make use of SFC in rinse-dry sequence:
 - 1. Adding SFC step prevents the lines to collapse, even with 20s 0.05%HF pre-treatment and IPA RT

ACKNOWLEDGEMENT

Akihisa lwasaki

mec

embracing a better life

