Wafer Cleanliness: Challenges from an Increasingly-Complex Fab Process

Benjamin Eynon

Assistant Director, NASCENT Center University of Texas at Austin

March 28, 2017

Tech Leadership = Following 'Moore's Law'

Gordon Moore

ca 2010

Moore's famous prediction:

"The number of transistors on an integrated circuit will double every ~18 months."

Cost may end Moore's Law before physics will:

Moore's Law in Perspective

- Airplane
 - 1903: Wright Bro's of NC
 - 7mph @ 0.7mpg
 - After 56 years (1959)
 - 224 billion mph

- Integrated Circuit
 - 1959: Jack Kilby of TI
 - 1 transistor
 - After 56 years (2015)
 - 32 billion transistors

Jack would now be able to travel from Dallas, TX to NYC in

6.9 nanoseconds on just the fumes from a drop of gas!

Challenges in IC fabrication

- Photomask and Wafer Defects
- Integration Complexity
- Data Comprehension
- Process Limitations

Fab Defects on Photomasks

The materials and ambient trapped between the pellicle film and the mask surface create a reactant-rich atmosphere.

This "reaction chamber" produces organic and inorganic precipitates by photochemical means and called progressive defects.

A similar mechanism can trigger backside glass progressive defect formation (haze) simultaneously.

Photomask Defect Composition Analysis

Most common haze crystals are made of:

ammonium sulfate $[(NH_4)_2SO_4]$

ammonium oxalate $[(NH_4)_2C_2O_4.H_2O^+]$

Cleaning / Environment

Many other compounds were also identified on photomask surfaces:

• ammonium carbonate • ammonium carbamate • acrylonitrile butadiene styrene co-polymer • dimethyl phthalate • diethyl phthalate • dibutyl phthalate • dioctyl phthalate • palmitic acid • 2,4-di-t-butyl phenyl phosphite • 2,6-di-t-butyl phenyl phosphite • cellulose nitrate • methyl palmitate • potassium phosphate • cyanuric acid • stearic acid • t-butyl benzene • Tinuvin® • oleic acid amide • brassidic acid amide • cyanoacrylate adhesive • poly(dimethyl siloxane) • silicic acid • ammonium silicate • poly(methyl methacrylate) • poly(butyl methacrylate) • poly(methacrylic acid) • poly(vinyl chloride) • poly(vinylidene chloride) • poly(tetrafluoroethylene) • sodium ions • potassium ions • calcium ions • ceric ammonium salts • organosilanes • organosiloxanes • alkyl fluorosulfonic acids • aryl fluorosulfonic acids • langmuir-blodgett films of long chain polar aliphatic compounds • sodium chloride • potassium chloride • glycine • protein residues • santovar® • nickel acetate • nickel sulfate • chromium sulfate • nylon • organoamines • nitrile compounds

Source: Grenon Consulting, Inc.

Fab Defects on Wafers

Near-perfect tool maintenance and wafer cleaning capabilities required!

Integration Complexity - Structure

Planar to Vertical Transistor Architecture

Planar MOSFET

Vertical FinFET

Integration Complexity – IC Periodic Table

(after John Robertson, CUED)

1A	2A	3B	4B	5B	6B	7B	8B			1B	2B	ЗА	4A	5A	6A	7A	8A
Н																	Не
Li	Ве											В	С	N	0	F	Ne
Na	Mg											Al	Si	Р	S	CI	Ar
К	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо		Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
Cs	Ва	La*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi			

EYNON **PHOTRONICS**

(after John Robertson, CUED)

Today, nearly two thirds of the non-radioactive elements are used in every chip!

1A	2A	3B	4B	5B	6B	7B	8B			1B	2B	ЗА	4A	5A	6A	7A	8A
Н																	Не
Li	Ве											В	С	N	0	F	Ne
Na	Mg											Al	Si	Р	S	CI	Ar
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо		Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	La*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi			

Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Data Comprehension: Sensory Overload!

Too Much For Humans To Digest!

Toward high end of Sensors <u>AND</u> Products!

BGE - March 28th, 2017

Process Limitations: The Lithographer's Paradox

Lord Rayleigh

Min. Feature =
$$\frac{k_1 \lambda}{NA} + \frac{k_2 \lambda}{(NA)^2} = Depth of Focus$$

Wavelength and NA Evolution

NA Game Changer: Immersion Lithography (UPW)

Snell's law: $NA = \eta_0 \sin \theta_0 = \eta_f \sin \theta_f = \eta_r \sin \theta_r$

Optical Proximity Correction - k₁

Another k₁ Innovation: Double Patterning

Too Much Innovation? Quadruple Patterning

Future Options

- Octuple
- LELELE
- LELELELE
- • •
- EUV (Single)?

Limiting Factors

- 1. Overlay
- 2. Yield
- 3. Cost

What IC Challenges Lie Ahead?

Source: LithoVision 2015

BGE – March 28th, 2017 SPCC – Austin, TX

Moore's Law and Contaminant Size

- Particulates Example
 - UPW spec <200pcs/liter @ >50nm
 - Max defect size on mask 7-10% of wafer CD (~1-2 nm)
 - Size spec needs to track with node shrinks
 - 14nm: **1.0nm** → 10nm: **0.7nm(7Å)** → ...

Contaminants Can Destroy Wafer Yield

- Bacteria Colony-Forming Units (CFUs)
 - Typical size is 1-8µm in length

- One CFU/liter could easily destroy dozens of logic die
 - UPW is used dozens of times in Cleans, CMP, & Photo steps

 If it kills one die on a photomask, then all wafers shot with that mask will suffer yield loss for that die

BGE – March 28th, 2017 SPCC – Austin, TX

A Mathematical Perspective

- >5 billion non-redundant transistors in a logic chip
- x >600 chips per wafer
 - >3 trillion sites on every wafer needing to be perfect!

There are also ~3.35x10²⁵ molecules/liter in UPW

```
Today's UPW impurity specs:

ppt for metals, ions, boron

ppb for TOC, DO, Total SiO<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>

pcs/liter for particles and bacteria

"Allowed Bad"

33.5 trillion

33,500 trillion

Dozens
```

Yield-Up Speed is Critical

Typical Yield Improvement Dynamics

Now vulnerable to <u>picoscale</u> differences and perturbations!

What Do Fabs Need of Suppliers?

- Excel in the Four C's
 - Capability
 - Collaboration
 - Consistency
 - Communication

Capability – Key to getting yield

- Anticipate & explore new formulations and methods of synthesis
- Utilize most advanced metrology & inspection

 Outgoing quality testing sampling to guarantee 100% of shipment

Collaboration – Key to improving yield

- Share roadmaps and needs from the current node down to n+2
- Share metrology, inspection,
 & analytical tool lists and cross-verify with fab
- Share and test ideas with fab and fab tool suppliers (e.g. layer-specific formulations)
- Share in enabling green-ness (packaging, recycling, etc.)

Consistency – Key to stable yield

- Structured risk elimination
 - Assume all changes matter
- Sub-supplier management by fab QA personnel

- Batch-to-batch uniformity beyond the CofA
- Reduce variability post manufacture through installation and use
 - Shipment and storage conditions
 - Filter prep time

Communication – Key to not 'tanking' yield

- Advise fab on filtration and blending strategies
- Report manufacture, delivery, and storage conditions

- Proactively report or recall excursions of any kind once discovered
- Be open to fab feedback (Avoid "I told you so" moments.)

Summary

Making Advanced Semiconductors is HARD!

- Defectivity
- Integration complexity
- Data/Sensor comprehension
- Process limitations

Four C's to Success in this Business

- Capability is key to getting yield.
- Collaboration is key to improving yield.
- Consistency is key to stable yield.
- Communication is key to not "tanking" yield.

Thank you, any questions?