

Potential Challenges of Metal-Oxide Based Photoresist and Subsequent Rework Removal

Benjamin L. Clark¹, Michael Kocsis¹, Michael Greer¹, Andrew Grenville¹, Takashi Saito², Koichi Hontake², Lior Huli², Richard Farrell², David Hetzer², Hiroie Matsumoto², Andrew Metz², Shan Hu², Fitrianto², Jeffrey Smith², Shinichiro Kawakami³, Koichi Matsunaga³, Masashi Enomoto³, Jeffrey Lauerhaas⁴, Anthony Ratkovich⁴, David DeKraker⁴

Inpria Corporation¹
TEL Technology Center, America, LLC²
Tokyo Electron Kyushu Limited ³ / TEL FSI, Inc.⁴
April 19th 2016

EUV Photo Resist Design Principles

Small Molecular Building Blocks

Photocondensed Molecular Metal Oxides

High EUV Absorbance

Robust Etch & Mechanical Properties

EUV Photo Resist Development Strategy

Patterning Performance

Fab Integration (Lab-to-Fab)

Working with equipment, materials, consortia, university, and device manufacturer partners

Transition From Lab-to-Fab

- Inpria Y-series photoresists contain organometallic complexes, which are soluble in commonly used fab solvents
- Demonstrating compatibility with fab equipment and processes is critical for integration in the fab
- Demonstrate:
 - Zero cross-contamination
 - Film coating and uniformity
 - Film defectivity analysis
 - Metal residue detection on Si backside and EBR region
 - Etch selectivity relative to conventional CAR
 - Ability to rework without surface degradation
 - Particles
 - Metals

Cross-contamination check

TXRF detection limit

Typical
fab spec

Coating Metrics – Defectivity

- Defectivity improvement in resist manufacturing
 - Comparison between two resists synthesized with standard and improved filtration without POU filter

Improved filtration methods during resist manufacturing helps reduce film defectivity

Coating Metrics – Defectivity

- Defectivity improvement by Coater / Developer
 - Comparison between standard dispense system and FEF (Filtration Enhanced Function) with POU filter

FEF on Coater / Developer system also helps to reduce film defectivity

Etch Rate Test

After etch

Conventional CAR resist

Initial

Initial

Inpria YA series

After etch

Tactras[™]

Initial

Shrunk by

Inpria YA series

with hard bake

After etch

TEL ORIONTM –hp for Rework

- Unique closed chamber with novel ViPR[™] process using SPM + Steam
- Aggressive strip process to remove resist and other organic containing layers with minimum process time & chemical use

Challenge	Removal	
High dose (>E15) implant DUV	✓	
Tri-layer (Si-ARC up to 43% Si)	✓	
Amorphous C	✓	
Plasma Doped (PLAD)	✓	

ORIONTM-hp

Rework Test

- Resist strip test with steam injected SPM + SC1
 - Steam Injected SPM time varied; SC1 time fixed

Resist		Detection Limit	Post rework				
component	Method	(E10 atoms/cm2)	10 sec	20 sec	30 sec	60 sec	
Metal	TXRF	5	< 5	< 5	< 5	< 5	

- Inpria resist stripped successfully with steam injected SPM
 - Metal level below detection limit with ≥ 10sec process time
 - Defects at baseline levels with ≥ 20sec process time

ORION"-ha

Conclusions

- Inpria resist compatibility with CLEAN TRACK[™] LITHIUS Pro[™] EUV coater/developer has been demonstrated
- Inpria resist stripped successfully with steam injected SPM
- Metal level below detection limit with ≥ 10sec process time
- Defects at baseline levels with ≥ 20sec process time

Acknowledgements

- Special thanks to ASML for NXE3300 exposures
- TELTM personnel at ASML and IMEC
- TEL ES / SPS personnel at TEL Technology Center, America, LLC / TEL FSI, Inc.

Thank you

