Potential Challenges of Metal-Oxide Based Photoresist and Subsequent Rework Removal Benjamin L. Clark¹, Michael Kocsis¹, Michael Greer¹, Andrew Grenville¹, Takashi Saito², Koichi Hontake², Lior Huli², Richard Farrell², David Hetzer², Hiroie Matsumoto², Andrew Metz², Shan Hu², Fitrianto², Jeffrey Smith², Shinichiro Kawakami³, Koichi Matsunaga³, Masashi Enomoto³, Jeffrey Lauerhaas⁴, Anthony Ratkovich⁴, David DeKraker⁴ Inpria Corporation¹ TEL Technology Center, America, LLC² Tokyo Electron Kyushu Limited ³ / TEL FSI, Inc.⁴ April 19th 2016 ## **EUV Photo Resist Design Principles** Small Molecular Building Blocks Photocondensed Molecular Metal Oxides High EUV Absorbance Robust Etch & Mechanical Properties # **EUV Photo Resist Development Strategy** Patterning Performance Fab Integration (Lab-to-Fab) Working with equipment, materials, consortia, university, and device manufacturer partners #### Transition From Lab-to-Fab - Inpria Y-series photoresists contain organometallic complexes, which are soluble in commonly used fab solvents - Demonstrating compatibility with fab equipment and processes is critical for integration in the fab - Demonstrate: - Zero cross-contamination - Film coating and uniformity - Film defectivity analysis - Metal residue detection on Si backside and EBR region - Etch selectivity relative to conventional CAR - Ability to rework without surface degradation - Particles - Metals #### **Cross-contamination check** TXRF detection limit Typical fab spec # Coating Metrics – Defectivity - Defectivity improvement in resist manufacturing - Comparison between two resists synthesized with standard and improved filtration without POU filter Improved filtration methods during resist manufacturing helps reduce film defectivity # Coating Metrics – Defectivity - Defectivity improvement by Coater / Developer - Comparison between standard dispense system and FEF (Filtration Enhanced Function) with POU filter FEF on Coater / Developer system also helps to reduce film defectivity ### **Etch Rate Test** After etch **Conventional CAR resist** Initial Initial Inpria YA series After etch Tactras[™] Initial Shrunk by Inpria YA series with hard bake After etch # TEL ORIONTM –hp for Rework - Unique closed chamber with novel ViPR[™] process using SPM + Steam - Aggressive strip process to remove resist and other organic containing layers with minimum process time & chemical use | Challenge | Removal | | |---------------------------------|----------|--| | High dose (>E15) implant DUV | ✓ | | | Tri-layer (Si-ARC up to 43% Si) | ✓ | | | Amorphous C | ✓ | | | Plasma Doped (PLAD) | ✓ | | #### ORIONTM-hp #### **Rework Test** - Resist strip test with steam injected SPM + SC1 - Steam Injected SPM time varied; SC1 time fixed | Resist | | Detection Limit | Post rework | | | | | |-----------|--------|-----------------|-------------|--------|--------|--------|--| | component | Method | (E10 atoms/cm2) | 10 sec | 20 sec | 30 sec | 60 sec | | | Metal | TXRF | 5 | < 5 | < 5 | < 5 | < 5 | | - Inpria resist stripped successfully with steam injected SPM - Metal level below detection limit with ≥ 10sec process time - Defects at baseline levels with ≥ 20sec process time ORION"-ha #### Conclusions - Inpria resist compatibility with CLEAN TRACK[™] LITHIUS Pro[™] EUV coater/developer has been demonstrated - Inpria resist stripped successfully with steam injected SPM - Metal level below detection limit with ≥ 10sec process time - Defects at baseline levels with ≥ 20sec process time # Acknowledgements - Special thanks to ASML for NXE3300 exposures - TELTM personnel at ASML and IMEC - TEL ES / SPS personnel at TEL Technology Center, America, LLC / TEL FSI, Inc. # Thank you