

Post Tungsten CMP Cleaner Development with Improved Organic and Particle Residue Removal on Silicon Nitride and Excellent Tungsten Compatibility

Ching-Hsun Chao, Chi Yen, Ping Hsu, Eugene Lee, Paul Bernatis

EKC Technology, DuPont Electronics and Communications

Ken.Chao@dupont.com; Paul.R.Bernatis@dupont.com

Content

Introduction

• Problem statement & hypothesis

Experimental section

• Zeta potential analysis / Atomic-force microscopy / Cleaning efficiency estimation method / Tungsten compatibility analysis

Results and discussions

- pH & zeta potential relationship on Si₃N₄ & SiO₂
- Adhesion force & cleaning relationship on Si₃N₄
- pH & zeta potential relationship with cleaning efficiency on Si_3N_4
- Tungsten compatibility improvement with additive A
- Proposed clean mechanism on Si₃N₄

<u>Summary</u>

Problem statement

Clean efficiency on SiNx

Tungsten compatibility

- There are four types of defectivity after post tungsten cleaning.
- Improve tungsten compatibility and cleaning efficiency to improve defectivity.

Zeta Potential Measurements on Wafer Substrates and **Defect Sources**

Zeta Potential vs. pH

- Adjust formulation pH to measure zeta potential
- High pH value provides higher electronic repulsive force between contaminant particles and SiNx and tungsten wafers

Method to Estimate Cleaning Efficiency

- W & SiN wafer pre-treatment method:
 - Cut 3 cm square cubic area wafer coupons
 - Apply the slurry (with or with out centrifuge) on the W & SiN wafer coupon surface and allow it to dry it overnight.
 - Put the wafer coupon in 100 mL of post-CMP formulation for 1, 5 or 10 minutes. (500 RPM @ 50°C). Dry the coupon and analyze by SEM

Atomic-force microscopy

Image of the cantilever mounted a bead

A schematic of adhesion measurement

A technique using AFM (atomic force microscopy) was developed to measure the adhesion forces between colloidal silica particles (50 – 80 nm) and wafer surfaces in the cleaning solution. Additionally, by attaching a polystyrene bead (~5 μ m) to the AFM cantilever and measuring the force-distance curve to Si₃N₄, Cu and W wafers the adhesion force between polystyrene and the wafer substrate was obtained.

Tungsten compatibility analysis

- Pretreatment tungsten wafers
 - Cut 3 cm square cubic area tungsten wafer coupons
 - Immerse the coupon in 100 mL formulation for 10 minutes.
 - Measure the amount of tungsten dissolved in the formulation with ICP-MS

Immerse the tungsten coupon for 10 minutes in the cleaning solution

Remove the coupon and analyze the tungsten ion concentration by ICP-MS

pH & zeta potential of Si₃N₄ relationship

Chemical A and Chemical C shifted the zeta potential of SiN_x. Increased levels of Chemical A raised the pH of the formulation and the zeta potential of SiN_x became more negative. Chemical C decreased the pH of the formulation as its concentration was increased and the zeta potential of SiN_x was increased.

pH & zeta potential of SiO₂ relationship

Chemical A and Chemical C concentrations affected the zeta potential of SiO₂. Higher concentrations of Chemical A raised the pH and the zeta potential of SiO₂ became more negative. Chemical C had the reverse behavior and decreased the pH and increased the zeta potential of SiO₂.

Adhesion Force & Clean Relationship on Si₃N₄

 The best cleaning efficiency was observed at high pH where the adhesion force between polystyrene and Si₃N₄ was reduced. Slurry residues would be more dissolved in an alkaline environment and the lower adhesion force will facilitate particle and organic residue removal.

OUPONT

pH & zeta potential relationship with clean efficiency on Si_3N_4

 From main effects plot, we found that increased amount of Chemical A would enhance clean efficiency but increased amount of Chemical C would decreased clean efficiency. The clean efficiency improvement came from pH effect or zeta potential effect because when we increased the amount of Chemical A the pH would increase at the same time.

Tungsten compatibility improvement by added chemical A

Added chemical A could improve tungsten compatibility and reduce tungsten loss in the formulation. It is well known tungsten is easy to corrode in high pH region. However, chemical A showed good tungsten compatibility in the high pH region. When we added chemical C amount higher than middle level, it will increase tungsten loss.

Proposed clean mechanism on Si_3N_4

 We could find lower W-loss and better clean efficiency on pH 8 to 9. If zeta potential of SiN is less than -40 mV, it will showed better clean efficiency in the formulations. We also observe same trend on SiO₂ when zeta potential is less than -38 mV. Zeta potential effect maybe come from pH effect.

Summary

- ➢In the high pH region, lower adhesion force between polystyrene and Si₃N₄ will result in better clean efficiency.
- Chemical A could show good tungsten compatibility in the high pH region.
- ➢ If the zeta potential of Si₃N₄ & SiO₂ is less than -40 mV, the formulations yielded better cleaning efficiency