

Contamination Control of Manufacturing Practices Using Critical Wipers

Balazs NanoAnalysis, 46409 Landing Parkway – Fremont CA 94538

Agenda

Authors: Victor K.F. Chia and Jennifer Jew

Contact: victor.chia@airliquide.com

- Introduction to Clean Manufacturing
- Contamination Sources
- Value of Critical Wipe Test
- Critical Wipe Test Procedure
- Case Studies
- Contamination Mapping
- Contamination Risk Assessment
- Summary

Why is Clean Manufacturing Important?

- Clean Manufacturing (Operation) is a prerequisite to successful manufacturing
- It is often overlooked because it is a culture and it is considered a hindrance to the production process and schedule
- But it is important because it can impact:
 - Product line down time
 - Quality and delivery issues
 - Not sharing of Best Practices
 - Planning delays
 - Overtime cost

Clean Manufacturing is a culture of doing it right when no one is looking or checking

The MicroContamination Experts

What is Needed for Clean Manufacturing?

Analytics provide insight to cleanroom operation and manufacturing that are affecting product quality

- Monitor and understand the sources of contamination during cleanroom operations, procedures and activities
- Contamination control systems for effective control of physical

and environmental parameters and process-to-process interactions

- Effective wipe down to improve surface cleanliness by removing contaminants that can originate from
 - People
 - Environment
 - Parts and equipment

Primary Contamination Sources

- Facility gas, water, chemicals and infrastucture
 - Cleanroom environment cleanroom, laminar flow hood
 - Cleanroom consumables garments, gloves, bags, wipes, packaging
- People contamination generator and mechanism for transfer
- Manufacturing materials lubricants, detergents, polishing agents.
- Supplier in addition, any process steps completed by an external supplier must also be evaluated

Value of Critical Wipe Test

- IC devices vary greatly in complexity and application
- When processing advanced IC devices it is important to know the cleanliness state of normal cleanroom operation, before and after facility upgrade and process tool PM
- Critical wipe monitoring can provide valuable insight to the cause of a contamination event affecting the product quality; contamination sources have unique signatures

Value of Critical Wipe Test

The metals monitored by Critical Wipe Test can be associated with People, Process Equipment and the condition of the Facility

People

Element

RL

- Sodium (Na) 10 Total ng/wipe
- Potassium (K) 50 Total ng/wipe

Process/Equipment

Element

RL

- Nickel (Ni) 10 Total ng/wipe
- Iron (Fe) 50 Total ng/wipe
- Copper (Cu) 10 Total ng/wipe
- Chromium (Cr) 10 Total ng/wipe
- Aluminum (AI) 10 Total ng/wipe

Facility

Element

RL

- Magnesium (Mg) 10 Total ng/wipe
- Calcium (Ca) 50 Total ng/wipe

Contaminants

Galvanized steel,

Fe, Ni, Zn

People, Na

Gypsum = $CaSO_4$, $Ca/MgCO_3$. Na/KCI,

FeS₂

Dirt = SiO₂ (quartz), CaCO₃,(limestone), Na, K, Mg, P, S, Fe,

and Mn

Critical Wipe Test Procedure

- Balazs pre-cleaned wipers are used for critical wipe test
- A surface should be swiped two (2) times in the same location using a fresh wipe surface
- Target surface area sampled is 16 cm²

Critical Wipe Test Procedure

Double glove. Clean outer glove using IPA.

i. Control wiper to sample cleanroom environment

iii. Return wipers into their containers

Wipers ready for ICP-MS analysis

Critical Wipe Test Results from the Wall

Based on this critical wipe test result, one can establish usage and activity levels; adherence of protocol, e.g. if frequency of wipe down was performed; and track contamination carry over

11/13	12/13	Diff.	
1500	2300	800	
80	81	1]
33000	*75000*	42000	Ca
100	90	-10	
490	*900*	410	1
2500	*3800*	1300	Fe Fe
120	100	-20	1
8400	16000	7600]
7700	12000	4300	< Mg
*	50	50] `
170	200	30]
8900	17000	8100	K
46000	*74000*	28000	Na
640	740	100	
170	290	120]
2200	3200	1000]
111970	205751	93781	

 $\frac{\text{Gypsum} = \text{CaSO}_4,}{\text{Ca/MgCO}_3. \text{Na/KCI, FeS}_2}$

Critical Wipe Test Results from Equipment

The critical wipe test result of inspection scopes can establish usage and activity levels; adherence of protocol, e.g. if frequency of wipe down was performed; and contamination carry over

	Start of Shift	Mid-Shift	End of Shift
Working Surfaces	Yes	After lunch	Yes
Equipment Tools	Yes	Prior to use for each step	Yes
Microscopes	Yes	Not required	Yes
Fixtures	Prior to use	Not required	Not
			required

Critical Wipe Test Results from Process Tool

After PM, critical wipe testing revealed that locations F and J had the highest levels of Sodium and Potassium, while

location E had the lowest metals

Critical Wipe Test Results of Process Tool Assembly

Critical wipe testing identified key areas of operations contributing to cross-contamination

Critical Surface Wipe Testing can be used to determine the CAUSE during Chamber Assembly

Check For Contamination Sources During Chamber Assembly

- Poor cleanroom protocols: gowning, contact with chamber
- · Contaminated tools: dirty wrenches, tools to lift chamber
- · Contaminated environment: walls, workbenches, hoods
- Airborne molecular contamination
- Poor Clean Manufacturing practices

GAP ANALYSIS

The MicroContamination Experts

Contamination Mapping of Facility and Operation

Contamination Risk Assessment

■ Gap Analysis recommendations and action items concluded from Critical Wipe tests should be reviewed with the intent to calculate their risk posed to the product 5

The "Risk" is likelihood of the occurrence multiplied by the "Effect" of the contamination hazard on the assembly or process step

Summary

- With knowledge of the cleanroom use and how it is maintained, Critical Wipe Testing is capable of:
 - Rapid on-site testing for metals on critical surfaces
 - Being performed in a wide range of environments
 - Detect changes in surface metals on a part before and after it undergoes a process, after handling and after cleaning
 - Determine the surface metals on multiple components in wafer processing equipment
 - Quantify metal contamination at various locations in a cleanroom
- Once a historical Critical Wipe Test data base has been established, a contamination event (source and cause) will reveal itself

