

Process Gas Ar Flow Usage Reduction in Aerosol Cleaning

Asha Sharma, Ella Mihevc, Christopher Waitkus, Tsultrim Tharchin and Silas Scott

April 20, 2016

Background

Particle Removal in Cryogenic Aerosol Cleaning

Effect of process gas on particles

Methods

Throughput Improvements on Ar Aerosol Cleans

- Tuning recipe parameters
- Ar flow usage reduction, process time & throughput

Results

Throughput Improvements on Aerosol clean @ GLOBALFOUNDRIES

UPH gain and saving (14 nm)

Background

Particle Removal in Cryogenic Aerosol Cleaning

Effect of process gas on particles

Methods

Throughput Improvements on Ar Aerosol Cleans

- Tuning recipe parameters
- Ar flow usage reduction, process time & throughput

Results

Throughput Improvements on Aerosol clean @ GLOBALFOUNDRIES

UPH gain and saving (14 nm)

Particle Removal: Cryogenic Aerosol Clean

Schematic Cryogenic Aerosol Clean

^{1,2}Pressure-temperature diagram Ar:N₂ system

Process parameters

- Process Gas
- process gas pressure
- chamber pressure
- Chuck speed/indexing
- chuck temperature
- Dewar back pressure

Schematic (redrawn from 1)

¹Particle Adhesion and Removal, p 460, Wiley & Sons ²ANTARES[®] System, TEL

Effect of Process Gas

Particle removal efficiency (@ 32 nm)

PRE (Particle removal efficiency) (calculated from pre-post/pre)

Aerosol Cleaning Force³:

Momentum, $mv = F.\Delta t$

Collision force, $F = V\rho \cdot \frac{v}{\Delta t}$

where, V is volume and ρ is density of cryogenic aerosol

Atomic mass Ar = 39.948 amu Molecular weight $N_2 = 28.0134$ amu

➤ Ar:N₂ mixture will have greater momentum transfer than N₂ only

Summary:

- Particle removal efficiency higher for Ar:N₂ mixture
- Ar:N₂ aerosol greater momentum transfer than N₂

Effect of Process Gas on Performance

28 nm: Open and shorted via chains

D ₀ Reduction (%) by Ar addition			
SLO/2LS		MLO/MLS	
0	S	0	S
15	28	52	68

Ar (Ar:N₂) aerosol cleaning shows better opens and shorts performance than N₂ aerosol cleaning

Summary:

 Ar:N₂ aerosol cleaning shows reduced D₀ than N₂

Effect of Process Gas on Performance

28 nm CFM Defectivity, and Yield

NDDc / normalized defect density counts ♥ > 55 %

Summary:

Ar:N₂ aerosol cleaning show improved inline performance

- NDDc reduction > 55%
- Yield improvement by ~ 0.7%
- Yield variation reduced by ~74%

Background

Particle Removal in Cryogenic Aerosol Cleaning

Effect of process gas on particles (Sub 28 nm node)

Methods

Throughput Improvements on Ar Aerosol Cleans

- Recipe parameters tuning
 - Ar flow usage reduction, process time & throughput

Results

Throughput Improvements on Aerosol clean @ GLOBALFOUNDRIES

UPH gain and saving (14 nm)

Throughput Improvements on Aerosol Cleans:

Recipe parameters tuning

Tuning parameters

- Process time
- Particle removal efficiency
- Throughput

P1 P2 (~32% process time reduction)
P2 P3 (~28% process time reduction)

Summary:

- P1 P3, process time reduction by ~ 60%
- Throughput gain
- Cost of ownership
- Ar flow usage reduction

Throughput Improvements on Aerosol Cleans:

P1, P2, P3: Comparison of True Adders

Summary:

• True adders in, P1 to P2 to P3, are comparable

Throughput Improvements on Aerosol Cleans

Adders (@ 19 nm) for 14 nm HVM

Summary:

Comparable adders performance @ 19 nm

Throughput Improvements on Aerosol Cleans:

28 nm product: Via Opens and Shorts

Summary:

P1 and P3 show comparable D₀ (opens and shorts) performance of 28 nm HVM

GLOBALFOUNDRIES®

April 14, 2016

Background

Particle Removal in Cryogenic Aerosol Cleaning

Effect of process gas on particles (Sub 28 nm node)

Methods

Throughput Improvements on Ar Aerosol Cleans

- Recipe parameters tuning
 - Process time, throughput, Ar flow usage reduction

Results

Throughput Improvements on Aerosol clean @ GLOBALFOUNDRIES UPH gain and saving (14 nm)

Throughput Improvements Aerosol Cleans:

UPH Gain and Cost Saving

Summary:

P3 implementation at GLOBALFOUNDRIES

- faster throughput
- capable moves
- lowering CoO
- saving on Ar

CapEx saving to date (%)	CoO saving on Ar usage	
28%	60%	

Throughput Improvements Aerosol Cleans

14 nm product: Via Opens and Shorts

GLOBALFOUNDRIES°

D₀ via opens and shorts are comparable for P1 and P2 process

D₀-Opens/shorts wafer maps

Summary:

- P1 and P3 show comparable D₀(opens and shorts) performance on product
- Faster throughput recipe cleaning performance could be maintained at BEOL cleaning process steps

April 14, 2016 15

Throughput Improvements Aerosol Cleans

Impact 14 nm CFM Defectivity

Defect overlay map - 4 random wfrs

NDDc (defects) comparable

Summary:

P1 and P3 show comparable inline CFM performance on 14 nm HVM

Summary and Conclusions

Ar (Ar:N₂) aerosol

- Shows reduced D₀ than N₂
- NDDc improvement > 55%
- HVM Yield improvement by ~ 0.7%

Throughput improvement, P3 implementation at GLOBALFOUNDRIES

- Faster recipe on 14 nm HVM
- ✓ Comparable D₀ (opens and shorts)
- √ Comparable inline CFM performance
- Increased capacity with same number of tools
- CoO [⊕] by ~ 28%
- Ar gas consumption ♣ ~ 60%

Acknowledgements

Grateful thanks to:

- Wet Cleans Colleagues in GLOBALFOUNDRIES
- Process Integration Colleagues in GLOBALFOUNDRIES

Questions?

