

Improved Cryogenic Gas Cleaning for Nanoparticle Removal SPCC 2016 April 19-20, 2016

Chimaobi Mbanaso & Jeffery W. Butterbaugh Process Technology Department TEL FSI, Inc.

3455 Lyman Boulevard, Chaska, Minnesota Chimaobi.Mbanaso@us.tel.com. (952) 361 7254

Outline

Nanoparticle Removal Roadmap and Challenges

Dry Particle Removal Using Cryogenic Aerosol Technology

Recent Advances in Cryogenic Aerosol Technology for Nanoparticle Removal

Conclusions

Nanoparticle Removal Roadmap and Challenges

- ITRS 2015 roadmap critical size = 11 nm in 2016, 7.5 nm in 2020
- Consideration of agglomeration and/or fragmentation
- Multi-patterning defectivity > quad-patterning = "quad defects"

Figure 2: Diagram showing the surface concentration versus diameter of contamination particles. 2 yield lines are added for the case of an active area of 0.1 cm². The particle specification is represented by the point (10nm, 0.01 /cm²). The specification for O and C on the surface is represented by the point (0.3nm, 10¹²/cm²). The color red indicates out of specification, while green means within specification. The slanted (power 1/3) lines represent contamination isochores.

P.W. Mertens, Contamination Specifications, an Overall Perspective, In ECS Trans. 69(8), 87-93(2015).

Figure 1: Schematic of a pitch quartering flow using two spacer depositions. The sequential processing steps are labeled 1-6.

M. van Veenhuizen et al., Demonstration of an electrically functional 34nm metal pitch interconnect in ultralow-k ILD using spacer based pitch quartering, in Proc. IITC, 2012, pp. 1–3.

Motivation for Chemical-Free Dry Particle Removal

- No Corrosion / No Material Loss
 - No Photon Induced Copper Redistribution
 - No Copper Corrosion
 - No Galvanic Corrosion
 - No Fin Loss
- Effective on Hydrophobic Surfaces
- No Adverse Effects on Low-k Films
- No Wetting Issues for Narrow Features

Cryogenic Ar/N₂ Aerosol Cleaning

Concept developed in 1990

W.T. McDermott et al, US Patent 5,062,898 (1991)

Applied in IC Manufacturing
 150 nm - 2000 nm size particles removed

J. Lauerhaas et al., Yield Improvement Using Cryogenic Aerosol for BEOL Defect Removal, in ECS Trans 11(2), 33-39(2007)

Current Cryogenic Ar/N₂ Aerosol Cleaning Principle

- Partially liquefied gas stream
- Expanded through linear spray nozzle
- Evaporative cooling causes solidification
- ~0.5-10 micron aerosol size

~50-100 m/s aerosol velocity

N. Narayanswami, Theoretical Analysis of Wafer Cleaning Using a Cryogenic Aerosol, in J. Electochem. Soc. 146(2), 767(1999)

N. Narayanswami et al., Development and Optimization of a Cryogenic Aerosol-Based Wafer Cleaning System, in Particles on Surfaces 5&6: Detection, Adhesion and Removal, 251(1999)

Damage-Free Particle Removal Window – Cryogenic Ar/N₂ Aerosol

New Cryogenic Aerosol Process

Goals:

- Increase removal efficiency for <40 nm particles, extend to 10 nm and beyond
- Damage-free for <40 nm features, extend to 10 nm and beyond
- Remove particles between patterns
- Develop Nozzle and Process Conditions to Achieve:
 - Smaller aerosol size
 - Narrower aerosol size distribution
 - Higher aerosol velocity

New Process Increases Nanoparticle Removal without Damage

Nanoparticle Removal Efficiency
 (Dry Deposited Si₃N₄ particles, 36-hour aged)

Pattern Damage Performance

Process	Pattern Features	Post-Process
New	23 nm Poly-Si 200 nm Si	
Current	23 nm Poly-Si 200 nm Si	

Nanoparticle Removal Efficiency Based on KLA Surfscan® Measurement

> 90% removal efficiency as measured by KLA SP2-XP for 40 nm Silica

40 nm Silica

Silica Particle

Size (Wet Deposited Silica Particles) Particle Size Distribution Counts 50nm 20nm 35nm

Contaminated Sample

6-Hour Silica Challenge + New **Process**

Particle Size Distribution

> 90% removal efficiency 30 nm Silica as measured by KLA SP5 for 30 nm Silica

Nanoparticle Removal Efficiency Based on SEM Inspection

 > 90% removal efficiency as measured by multiple SEM FOV counting

 > 80% removal efficiency as measured by multiple SEM FOV counting

Light Scattering "Haze" Used for Sub-Resolution Particle Detection

Figure 2. Haze Calibration Curves for PSL Spheres (left) and W Particles (right)

S.H. Yoo et al., Particle Removal Efficiency Evaluation at 40nm Using Haze Particle Standard, in Solid State Phen. Vol 76-77, 259-262(2001)

Nanoparticle Removal Efficiency Based on Haze Response

30 nm Silica, wet deposited, 6-hour aged

18 nm Silica, wet deposited, 6-hour aged

Particle Cleaning from Patterned Si Trenches

 30 nm Silica particle clusters were dry deposited on patterned Si wafer

Line Width (nm)	Line Space (nm)	Line Height (nm)
45 nm	45-90 nm	100 nm

Particle clusters on patterned silicon surface

Particle clusters removed after cleaning

New Cryogenic Process Maintains Compatibility with Low-k Films

 Low-k wafers were processed with cryogenic aerosol processes

 Low-k wafers unaffected after cryogenic aerosol processing

Summary

- IC ground-rules continue to shrink, creating particle removal challenges
- The damage-free cleaning window is becoming narrower
- Cryogenic aerosol cleaning is a chemical-free, non-corrosive particle removal technology that is proven in production
- New cryogenic nano-aerosol cleaning technology is effective for <40 nm particles and is damage-free for advanced IC manufacturing.

Acknowledgements

- Greg Thomes, Brent Schwab, TEL FSI, Inc.
- Kazuya Dobashi, Tokyo Electron Limited, Process Development Center
- Koji Kagawa, Tokyo Electron Kyushu Limited, SPE Process Technology Dept.
- Wallace Printz, Derek Basset, Antonio Rotondaro, Tokyo Electron America, Inc. Advanced Technology Group

