

Novel STI Step-height Uniformity Control by Wet Etch Process in 4xnm CMOS Device

H. W. Ho^a, Y. M. Liao*^a, M. C. Lu^b, T. H. Ying^b

^aWet Etch Technology Group, Process Technology Division, Powerchip Technology Corp.

^bProcess Technology Division, Powerchip Technology Corp.

No. 12, Li-Hsin RD. 1, Hsinchu, Taiwan, R.O.C

*: thenova@powerchip.com

+886-3-5795000 ext 8690

2016/04/19

Introduction

- HARP & HDP materials characteristic comparison
- The importance of step height uniformity control
- STI HARP wet etching uniformity performance by liquid HF

Step Height Uniformity Improvement

- Annealing effect
- Liquid HF (LHF) & gas HF (GHF) etching mechanism
- Process optimization result

Conclusion

Powerchip STI Materials Comparison (HDP & HARP)

- ❖ High aspect ratio process (HARP) has been applied in shallow trench isolation (STI) for 45nm CMOS and beyond due to better gap fill ability.
 - ◆ STI (Shallow Trench Isolation) Material Road Map

Generation		130 nm	65 nm	55 nm	4x nm	2x nm
HDP	A/R<4					
HARP	A/R~6					

- HDP (High density plasma):
 - √ Precursor: SiH₄ (silane)

- ✓ SiO₂ cross-linking before annealing
- ✓ Poor gap fill ability (A/R<4)</p>

- HARP (High aspect ratio process):
 - ✓ Precursor: O_3 + TEOS ($Si(OC_2H_5)_4$)

- ✓ SiO₂ cross-linking after annealing
- ✓ Better gap fill ability (A/R~6)

Powerchip Worse Etch Uniformity of HARP by LHF

❖ HARP wet etching rate (E/R) is harder to be controlled than HDP in different STI width by conventional liquid HF (LHF).

HDP:

Good step height uniformity

Powerchip The Definition & Importance of Step height & Divot

Step height control is necessary to avoid poly residue issue and Y% loss.

After poly gate etch

Case1:

Low Step height or Shallow Divot

Case2:

High Step height or Deep Divot

Powerchip Worse Step height Uniformity by LHF

- ❖ Step height (S/H) uniformity in different STI width is worse under LHF etching during well implant and gate oxide formation process.
- ❖ S/H in narrow STI width is lower than wide one and the bias is18.5nm.

Powerchip Anneal Effect on Wet Etch Uniformity

- Annealed HARP quality is different from narrow to wide STI width.
- ❖ Etch amount (E/A) uniformity is worse in annealed HARP than without annealed one.

- ❖ Narrow STI width area: weak cross-linking & high impurity.
- ❖ Wide STI width area: strong cross-linking & low impurity.

LHF & GHF Etching Mechanism

Less impurity → E/R fast

- ❖ LHF: HARP cross-linking (hardness) dominate.
- ❖ GHF: gas diffusion is limited by HARP impurity.

High impurity → E/R slow

Powerchip GHF & LHF E/A Performance Comparison

❖ LHF and GHF E/R in different STI width is opposite.

10

Process Optimization Result

- ❖ After optimizing the process flow by combining LHF and GHF, S/H bias through all STI width can be reduced from 18.2nm to 4.5nm
- ❖ The approach is very helpful for process window enlargement in following gate etch step.

TEM Profile STI width Middle Wide **Narrow** LHF only 11.4 18.5 Step height (nm) 0 **Optimized** process (LHF + GHF) 12.4 Step height (nm) 14.1 14.9

- The cross-linking and impurity content of annealed HARP is different between STI width, which is key impact factors of STI wet etching uniformity.
- ❖ E/R of LHF is related to oxide film hardness, on the other hand, E/R of GHF is limited by HARP impurity. Therefore, different HARP quality between STI width leads opposite E/A trend in LHF and GHF.
- Low S/H bias (<5nm) can be achieved by combining LHF and GHF, and poly gate etch process window can be enlarged by this fine-tuned STI profile.

Thank you for your attention

14

2016/04/19