High Temperature Water as a Clean and Etch of SiO₂ Films

Joshua Barclay, Oseoghaghare Okobiah,
Tina Sengphanlaya, Rick Reidy
University of North Texas

Rationale

- High temperature water (HTW) has demonstrated some interesting capabilities etching SiN (SPCC 2015)
- Given its enhanced reactivity, we were interested in the selectivity of HTW for SiN versus SiO₂

Outline

- Description of Experimental Apparatus and Conditions
- Characterization of SiO₂ wafers to examine the behavior following exposure to HTW
 - Ellipsometry—determine thickness changes
 - FTIR—changes in the chemistry and thickness
 - Profilometry—define boundaries and approximate changes in thickness

Experimental Apparatus

Heating mantle and reactor

Reactor can be easily removed from mantle

Reactor and sample holder

Experimental Conditions

- DI water heated to 98°C
- SiO₂/Si samples placed in the reactor and reactor closed (~45sec)
- Temperature set to 160°C for 5, 10, and 20 minutes (heat up takes ~17min)
- Reactor removed from heat and quenched in water for 2 minutes
- Reactor opened (~45sec)
- Sample stand is removed
- Samples rinsed with DI water and allowed to dry.

What are the Experimental Conditions?

• $pK_w = -log[K_w] = -log[H^+][OH^-]$: at 160°C, water has more ionic species than at room temp

FTIR of oxide exposed to 160°C steam

- FTIR (trans)
 of the top
 of the
 sample
 (above the
 water level)
- Shows SiO₂
 thickness
 increasing
 with longer
 exposures

Ellipsometry: oxide exposed to 160°C steam

- Tox oxidized and ↑ thickness
- Δ thickness after 5 minutes \rightarrow ~13nm
- Samples were too roughened after 10 and 20 minutes to model

Profilometry Profile: from protected to exposed to 160°C Water

- Region
 exposed
 to HTW
 showed
 etching
- Etch
 depth
 increased
 with time

Profilometry Profile: from 160°C Steam to 160°C Water region

 More gradual profile change compared to film regions exposed to HTW

Previous work on SiO₂ in HTW

- Solubility increases
 6x at
 160°C
- This solubility is sufficient to account for the loss of >1000 nm of oxide

RO Fournier and JJ Rowe, Amer. Miner, 62 1052-1056 1977

Ionization of Silica in HTW

 Ionization of silica at 160°C: ~10x greater than room temperature

Arnorsson, Sigurdsson, Svavarsson, 1982

What is Happening?

- Oxide Growth on top of sample—steam oxidation of silicon
- Regions exposed to HTW—water is more reactive (higher: pKw, solubility, ionization; lower: viscosity and surface tension) → etching
- Because the heating time is relatively short, most of the reaction is occurring at 160°C

Summary

- The oxide sample appears to be oxidized and etched in the same reactor at the same time.
 - Steam → oxidation
 - HTW→ etching
- Steam is like other oxidizing steams
- HTW is different from T < 100°C water
- Interesting but reaction may not be easy to control like SiN
- Future work:
 - Confirm etching mechanism
 - Determine etching rate as a function of temperature
 - Determine oxidation rate as a function of temperature

Acknowledgements

- Sematech
- UNT Center of Advanced Research and Technology (CART)
- UNT Advanced Materials and Manufacturing Processes Institute

