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Overview 

• Challenges for passivation of new channel 
materials 

• Why Hydrogen Peroxide & Hydrazine? 
• RASIRC BRUTE™ Technology 
• Passivation approach to InGaAs(001) 
• Passivation approach to SiGe(110) 
• Conclusions 



Challenges for Passivation on InGaAs and SiGe 
Channel Materials 

• In Situ methods are desired 
• Passivate surface dangling bonds 
• Maintain an electrically unpinned surface 

Fermi Level ready for subsequent high-K gate 
oxide nucleation 

• Passivation layer must prevent atomic 
migration into subsequent layers 

• Underlying substrate must not be damaged 
• Low thermal budget constraints (<400C) 



Why Gas Phase Hydrogen Peroxide? 

• Ge dosing experiments 
• HOOH/H2O will nucleate 

the surface more 
efficiently than H2O 
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Why Gas Phase Hydrazine? 

• Weakness of the N-N bond strength leads to 
high reactivity on Metal surfaces 

• New Channel Materials have limited thermal 
budgets (typical <400C) 

• Early studies (1992) by Slaughter and Gland 
show H2NNH2 to be more reactive than NH3 on 
an Si(100) surface 



Challenges 

• Anhydrous Hydrogen Peroxide liquid is difficult 
to handle and may rapidly decompose leading 
to explosion 

   HOOH(l)  H2O(g) + O2(g) 
 
• Anhydrous Hydrazine has a low flash point of 

37C and is highly toxic 
– Current commercial sources lack sufficient purity 



RASIRC Membrane Technology 

Carrier 
Gas Input 

Liquid 
Solution 

Nafion 
Membrane 

Tube 

• Custom extruded and 
chemically modified by 
RASIRC 

 
• Membrane has 10 to 50 nm 

pores, ionically charged 
 

• Only polar molecules can 
pass through 

The liquid (solution 
surrounds the 
membrane tubes, 
passes thru the 
membrane walls and 
gets picked up by the 
carrier gas 



Ionically Charged Channels 



Approach to Anhydrous Delivery 

• Purify and Isolate Ultra High Purity Anhydrous HOOH (l) or  H2NNH2 (l)  
•  Reactive chemical is stabilized by mixing with a proprietary solvent 
• Tubular Membrane/Carrier Gas 

– Selective for Hydrogen Peroxide or Hydrazine molecules 
• Desired Molecule permeates membrane and is delivered to process 
• Solvent remains on liquid side of membrane & does not enter gas stream 



Anhydrous Peroxide 






H2O2 in Solvent 



H2NNH2 in Solvent 



Approach to InGaAs Passivation/Functionalization 

• Decapped InGaAs surface 

• InGaAs + Si2Cl6  InGaAs/Si + GaCl3 

• InGaAs/Si + HOOH  InGaAs/Si(O)OH 

• InGaAs/Si(O)OH + TMA  InGaAs/SiO/Al2O3 



Self Limiting CVD – Si2Cl6/InGaAs(001)-(2x4) 

 Left: XPS Spectra collected at 30° glancing angle. Corrected XPS peak areas for 
clean (2x4), and following 3, 12, and 21 MegaLangmuir total Si2Cl6 doses at 
350oC.(Si2Cl6  dosed at 10 second pulses of 0.025 Torr).  
Right: Raw XPS peak areas for Ga 3p and Si 2p on clean InGaAs(2x4), and following 
3, 12, and 21 MegaLangmuir total Si2Cl6 doses at 350oC.  
 Desorption limited CVD of Si2Cl6 at 350°C  until  

no clean InGaAs surface sites available 
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Self Limiting CVD – SiOx/InGaAs(001)-(2x4) 

XPS Spectra collected at 30° glancing angle. Corrected XPS peak areas for clean (2x4), and 
following 87.6 MegaLangmuir Si2Cl6 at 350oC,  150.55 MegaLangmuir HOOH at 350oC, 60 
MegaLangmuir additional HOOH at 350oC, 50,000 L TMA at 250oC, and additional 250,000 L 
TMA at 250oC. Si2Cl6 pulses at 2.5x10^-2 Torr . HOOH pulses at 1x10^-2Torr .  TMA pulses at 
5x10^-3 Torr . 
 Anhydrous HOOH does not diffuse through SiOx layer and does not attack substrate 
  TMA reacts and saturates on the saturated HOOH surface at 250C 

 - SiOx control layer on InGaAs nucleates high-K gate oxide growth 
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Self Limiting CVD – SiOx/InGaAs(001)-(2x4) 

(Left) STS on n-type InGaAs: clean n-type InGaAs (2x4), : 87.6 MegaL Si2Cl6  and 
210.5 MegaL  anhydrous HOOH at 350C (ave of 7 curves) 
Right: Filled State STM image following: 87.6 MegaL Si2Cl6  and 210.5 MegaL  
anhydrous HOOH at 350C on n-type InGaAs(2x4)   
 Surface Fermi level shifts towards valence band from 

 –OH and –O induced surface dipole 
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TMA Nucleation on SiOx/InGaAs(001)-(2x4) 

Left: STS on n-type InGaAs: clean n-type 
InGaAs (2x4),  87.6 MegaL Si2Cl6 + 
210.5 MegaL HOOH at 350C (ave of 7 
curves), 300,000 L TMA at 250C (ave of 
11 Curves) 
 Surface Fermi Level shifts back near 

conduction band following TMA 
dose at 250C  

TMA on SiOx/InGaAs(001)-
(2x4) Clean 2x4 Surface 

87.6 MegaL  Si2Cl6, 
and 

 210.5 MegaL  HOOH 
at 350C 

300,000 L TMA at 
250C 

 
 
 

 



Off-the-Shelf 30% HOOH at 350C 

• 29 MegaLangmuir Si2Cl6 = Dosed 8 MegaLangmuir total of Si2Cl6 at 350°C at P=1x10^-2 Torr and then adjusted dosing 
conditions and dosed total 21 MegaLangmuir Si2Cl6 at P=2.5x10^-2 Torr at 350°C. About 1.2 Monolayers of Si coverage 

• 555,500 Langmuir HOOH = 500 L HOOH, additional 5,000 L HOOH,  additional 50,000 L HOOH, and then 500,000 L 
HOOH all at 350°C (1x10^-3 Torr for 500 sec). 

• Additional 6 MegaL HOOH = 3x10^-2 Torr for 200 seconds at 350°C. 60 MegaL HOOH= 3x10^-2 Torr for 33 min at 350°C.  
•  See no shift in BE of In,Ga,As peaks following 6 MegaL HOOH dose.  
• See noticeable shift of Si 2p peak to higher BE components: ~101.5 eV and ~103 eV 
 Following 60 MegaL HOOH dose at 350C indium diffuses to surface –  

large InOx peak seen 
 Going to establish standard Si2Cl6 dose to maintain same SiClx coverage every time 
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Low Temperature Passivation on SiGe(110) via 
Plasma Free Process 

• Atomic H clean p-type Si0.5Ge0.5(110) 
• Passivate Si0.5Ge0. (110) dangling bonds with anhydrous hydrazine 
• Maintain an electrically unpinned surface Fermi Level ready for subsequent functionalization 
• Functionalize the surface and fabricate a MOSCAP with strong performance 

 Subsequent doses of anhydrous hydrazine and hexachlorodisilane can further increase the 
amount of SiNx on the surface 

  Final treatment with HOOH can prepare the surface for  
High k deposition 



Passivation of SiGe(110) at 275C 

• XPS corrected peak areas.  SiGe0.5(110) p-type sample underwent ex-situ and atomic H cleaning 
procedures. 

• 20 cycles of N2H4at 275°C: Each cycle = 20 MegaL N2H4 (400MegaL total) 

• 20 SiNx ALD cycles at 275°C: Each cycle = 13.5 MegaL Si2Cl6 followed by 20 MegaL N2H4 

 See large SiNx peak with no increase in oxygen signal with no evidence of contamination in chamber 

 Higher binding energy silicon peak shift from 102 to 101.7 eV—consistent with Si3N4 film growth 

 Estimated 3-4 monolayers of silicon nitride overlayer 

 Growth rate of ~0.4 A / ALD cycle 
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STS of Atomic H vs SiNx Passivated Surface 

Left: STS of Atomic H cleaned p-type Si0.5Ge0.5(110) 

Right: STS following 20 SiNx cycles at 275°C on Si0.5Ge0.5(110) p-type sample following 1800L 
atomic H dose at 330°C and 400 MegaL hydrazine prepulse at 275°C  

 Atomic H cleaned surface Fermi level is at the midgap 

 SiNx on SiGe(110) surface still looks slightly more p-type with  
bandgapsize of ~0.8 – 0.9 eV 

(d
I/

dV
)/

I(V
) 

Scanning Voltage (V) 

-1.5 -1 -0.5 0 0.5 1 1.5

20 ALD SiNx cycles on p-type Si0.5Ge0.5(110) 
at 275°C Atomic H Cleaned p-type 

Si0.5Ge0.5(110) 



Conclusion 

• Demonstrated stable delivery anhydrous hydrogen 
peroxide 

• Demonstrated Si(O)OH passivation of InGaAs(001) 
• Underlying InGaAs(001) is not damaged, Si 

oxidation with HOOH appears to be self-limiting 
• Demonstrated low temperature nitride passivation 

of SiGe(110) 
• MOSCAP studies are underway 
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