Novel Reactive Chemistry Sources for Surface Passivation of Future Generation Channel Materials

Presented by

Daniel Alvarez 858-259-1220 <u>dalvarez@rasirc.com</u>

Daniel Alvarez; Jeffrey Spiegelman; Russell Holmes; Chris Ramos RASIRC, INC., San Diego, CA, 92126

Andrew C. Kummel, Mary Edmonds, Steven Wolf University of California, San Diego, 92093

Overview

- Challenges for passivation of new channel materials
- Why Hydrogen Peroxide & Hydrazine?
- RASIRC BRUTE™ Technology
- Passivation approach to InGaAs(001)
- Passivation approach to SiGe(110)
- Conclusions

Challenges for Passivation on InGaAs and SiGe Channel Materials

- In Situ methods are desired
- Passivate surface dangling bonds
- Maintain an electrically unpinned surface Fermi Level ready for subsequent high-K gate oxide nucleation
- Passivation layer must prevent atomic migration into subsequent layers
- Underlying substrate must not be damaged
- Low thermal budget constraints (<400C)

Why Gas Phase Hydrogen Peroxide?

Versus

- Ge dosing experiments
- HOOH/H₂O will nucleate the surface more efficiently than H₂O

Why Gas Phase Hydrazine?

- Weakness of the N-N bond strength leads to high reactivity on Metal surfaces
- New Channel Materials have limited thermal budgets (typical <400C)
- Early studies (1992) by Slaughter and Gland show H₂NNH₂ to be more reactive than NH₃ on an Si(100) surface

Challenges

 Anhydrous Hydrogen Peroxide liquid is difficult to handle and may rapidly decompose leading to explosion

$$HOOH_{(I)} \rightarrow H_2O_{(g)} + O_{2(g)}$$

- Anhydrous Hydrazine has a low flash point of 37C and is highly toxic
 - Current commercial sources lack sufficient purity

RASIRC Membrane Technology

Ionically Charged Channels

Approach to Anhydrous Delivery

- Purify and Isolate Ultra High Purity Anhydrous HOOH (I) or H2NNH2 (I)
- Reactive chemical is stabilized by mixing with a proprietary solvent
- Tubular Membrane/Carrier Gas
 - Selective for Hydrogen Peroxide or Hydrazine molecules
- Desired Molecule permeates membrane and is delivered to process
- Solvent remains on liquid side of membrane & does not enter gas stream

Anhydrous Peroxide

H₂O₂ in Solvent

H₂NNH₂ in Solvent

Approach to InGaAs Passivation/Functionalization

Decapped InGaAs surface

InGaAs + Si₂Cl₆ → InGaAs/Si + GaCl₃

InGaAs/Si + HOOH → InGaAs/Si(O)OH

InGaAs/Si(O)OH + TMA → InGaAs/SiO/Al₂O₃

Self Limiting CVD – Si₂Cl₆/InGaAs(001)-(2x4)

Left: XPS Spectra collected at 30° glancing angle. Corrected XPS peak areas for clean (2x4), and following 3, 12, and 21 MegaLangmuir total Si₂Cl₆ doses at 350°C.(Si₂Cl₆ dosed at 10 second pulses of 0.025 Torr).

Right: Raw XPS peak areas for Ga 3p and Si 2p on clean InGaAs(2x4), and following 3, 12, and 21 MegaLangmuir total Si₂Cl₆ doses at 350°C.

Desorption limited CVD of Si₂Cl₆ at 350°C until no clean InGaAs surface sites available

Self Limiting CVD – SiO_x/InGaAs(001)-(2x4)

XPS Spectra collected at 30° glancing angle. Corrected XPS peak areas for clean (2x4), and following 87.6 MegaLangmuir Si_2Cl_6 at 350°C, 150.55 MegaLangmuir HOOH at 350°C, 60 MegaLangmuir additional HOOH at 350°C, 50,000 L TMA at 250°C, and additional 250,000 L TMA at 250°C. Si_2Cl_6 pulses at 2.5x10^-2 Torr . HOOH pulses at 1x10^-2Torr . TMA pulses at 5x10^-3 Torr .

- > Anhydrous HOOH does not diffuse through SiOx layer and does not attack substrate
- TMA reacts and saturates on the saturated HOOH surface at 250C
 - ${
 m SiO_x}$ control layer on InGaAs nucleates high-K gate oxide growth

Self Limiting CVD – SiO_x/InGaAs(001)-(2x4)

(Left) STS on n-type InGaAs: clean n-type InGaAs (2x4), : 87.6 MegaL Si₂Cl₆ and 210.5 MegaL anhydrous HOOH at 350C (ave of 7 curves)

Right: Filled State STM image following: 87.6 MegaL Si_2Cl_6 and 210.5 MegaL anhydrous HOOH at 350C on n-type InGaAs(2x4)

Surface Fermi level shifts towards valence band from
 OH and -O induced surface dipole

TMA Nucleation on SiO_x/InGaAs(001)-(2x4)

TMA on SiO_x/InGaAs(001)-

Left: STS on n-type InGaAs: clean n-type InGaAs (2x4), 87.6 MegaL Si2Cl6 + 210.5 MegaL HOOH at 350C (ave of 7 curves), 300,000 L TMA at 250C (ave of 11 Curves)

Surface Fermi Level shifts back near conduction band following TMA dose at 250C

Off-the-Shelf 30% HOOH at 350C

- **29 MegaLangmuir Si₂Cl₆** = Dosed 8 MegaLangmuir total of Si₂Cl₆ at 350°C at P=1x10^-2 Torr and then adjusted dosing conditions and dosed total 21 MegaLangmuir Si₂Cl₆ at P=2.5x10^-2 Torr at 350°C. **About 1.2 Monolayers of Si coverage**
- 555,500 Langmuir HOOH = 500 L HOOH, additional 5,000 L HOOH, additional 50,000 L HOOH, and then 500,000 L HOOH all at 350°C (1x10^-3 Torr for 500 sec).
- Additional 6 MegaL HOOH = 3x10^-2 Torr for 200 seconds at 350°C. 60 MegaL HOOH = 3x10^-2 Torr for 33 min at 350°C.
- See no shift in BE of In, Ga, As peaks following 6 Megal HOOH dose.
- See noticeable shift of Si 2p peak to higher BE components: ~101.5 eV and ~103 eV
- Following 60 MegaL HOOH dose at 350C indium diffuses to surface large InOx peak seen
- Going to establish standard Si2Cl6 dose to maintain same SiClx coverage every time

Low Temperature Passivation on SiGe(110) via Plasma Free Process

- Atomic H clean p-type Si_{0.5}Ge_{0.5}(110)
- Passivate Si_{0.5}Ge_{0.} (110) dangling bonds with anhydrous hydrazine
- Maintain an electrically unpinned surface Fermi Level ready for subsequent functionalization
- Functionalize the surface and fabricate a MOSCAP with strong performance

- Subsequent doses of anhydrous hydrazine and hexachlorodisilane can further increase the amount of SiN_x on the surface
- Final treatment with HOOH can prepare the surface for High *k* deposition

Passivation of SiGe(110) at 275C

- XPS corrected peak areas. SiGe_{0.5}(110) p-type sample underwent ex-situ and atomic H cleaning procedures.
- 20 cycles of N₂H₄at 275°C: Each cycle = 20 MegaL N₂H₄ (400MegaL total)
- 20 SiN_x ALD cycles at 275°C: Each cycle = 13.5 MegaL Si₂Cl₆ followed by 20 MegaL N₂H₄
- > See large SiN_x peak with no increase in oxygen signal with no evidence of contamination in chamber
- **→** Higher binding energy silicon peak shift from 102 to 101.7 eV—consistent with Si₃N₄ film growth
- **Estimated 3-4 monolayers of silicon nitride overlayer**
- ➢ Growth rate of ~0.4 A / ALD cycle

STS of Atomic H vs SiN_x Passivated Surface

Left: STS of Atomic H cleaned p-type Si_{0.5}Ge_{0.5}(110)

Right: STS following 20 SiN $_{\rm x}$ cycles at 275°C on Si $_{0.5}$ Ge $_{0.5}$ (110) p-type sample following 1800L atomic H dose at 330°C and 400 MegaL hydrazine prepulse at 275°C

- Atomic H cleaned surface Fermi level is at the midgap
- SiN_x on SiGe(110) surface still looks slightly more p-type with bandgapsize of ~0.8 − 0.9 eV

Conclusion

- Demonstrated stable delivery anhydrous hydrogen peroxide
- Demonstrated Si(O)OH passivation of InGaAs(001)
- Underlying InGaAs(001) is not damaged, Si oxidation with HOOH appears to be self-limiting
- Demonstrated low temperature nitride passivation of SiGe(110)
- MOSCAP studies are underway

Collaborators

- Prof. Andy Kummel UC San Diego
 - Mary Edmonds
 - Steve Wolf
- Dan Tempel Matheson Tri-Gas
- Hank Simidzu Matheson Tri-Gas

Thank You

