

Effect of Surface Preparation of Copper on Self-Assembly of Fullerene Molecules

Dongni Ma, Selene Sandoval, Krishna Muralidharan, Srini Raghavan

University of Arizona

Department of Materials Science and Engineering
Department of Chemical and Environmental Engineering

Objective

- Effect of <u>surface preparation of copper</u> on:
- > Substrate mediated controllable self-assembly of fullerene rods

 \triangleright Ultimately enable high-aspect ratio molecular C_{60} wires as interconnects

Background: Conventional Methods for Fullerene Nanostructures

Conventional synthesis techniques

- Liquid-Liquid Interfacial Precipitation (LLIP):
 time consuming (a few hours two weeks)—
 no substrate needed.
- Template based self-assembly: longer processing time, expensive and broken nanotubes obtained—Porous alumina template to be infiltrated by fullerene solution.

Background: Surface mediated synthesis Directed Air Stream: leads to fullerene rods

Self-assemblies size:

Length: ~2 μm

■ Width: ~500-700 nm

Current Method: Spin coating based substrate mediated route

Substrates	Solution	Spin coating procedure	Spin coating RPM
Cold rolled Cu		1. Dispense solution.	
Annealed Cu	Fullerene dispersed in	2. Wait for 1 minute.3. Spin substrate at a predetermined RPM.	200-500 RPM
Electropolished Cu	Toluene (2mg/ml)	4. Spin for 30 seconds.	
Graphene coated Cu		Repeated 1-4 procedure for total of 4 times.	

4) 30 seconds **RPM. Drying**

Overall processing time: < 10 minutes for one substrate of size $1 cm^2$.

Substrate Preparation

Copper foil (0.25 mm thick, 99.99% metals basis, Alfa Aesar Puratronic®)

Cold rolled Cu (Contact angle of 72°)	Annealed Cu (Contact angle of 64°)	Graphene on Cu (Contact angle of 80°)	Electropolished Cu (Contact angle of 72°)	
Organic impurities removal: IPA rinsed, DI water rinsed, and blown dry with nitrogen.				
	Annealed in a tube furnace (Lindberg Blue M) for 2 hours at 1050°C.	Graphene on Cu via chemical vapor deposition (CVD).	Acetic acid treatment: 1) Immersed in 2M acetic acid solution at 60°C for 10 min. 2) DI water rinsed and blown dry with nitrogen. Electropolishing procedure shown on next slide.	

Preparation of Substrates: Electropolishing Procedure

- ➤ Solution: 85% phosphoric acid.
- ➤ Applied a constant potential of1.5 V vs. SCE for 1 hour.

Graphene grown via chemical vapor deposition (CVD)

CVD grown graphene shows characteristic ripple structure.

CVD conditions:
Pressure of 200 mTorr
Temperature of 1050°C
100 sccm Argon
60 sccm Hydrogen
20 sccm Methane

SURFACE CHARACTERIZATION

Surface Roughness of Cold Rolled Cu and Electropolished Cu an AFM Analysis

Cold rolled Cu

(surface roughness rms : 15.5nm)

Electropolished Cu

(surface roughness rms: 4.7nm)

Surface Roughness of Annealed Cu and Graphene Coated Cu an AFM Analysis

Annealed Cu

(surface roughness rms: 53.3nm)

Graphene Coated Cu

(surface roughness rms: 41.5nm)

Results and discussion

Substrates	Solution
Cold rolled Cu	
Annealed Cu	■ Fullerene dispersed in Toluene
Electropolished Cu	(2mg/ml)
Graphene coated Cu	

Uniform distribution of Rod-like C₆₀ Self-Assemblies on Cold Rolled Cu Substrate

Average length of fullerene self-assemblies (FSA) at 200 rpm: ~5 μm.

Size Analysis: Projected Area and Length Distributions of C₆₀ rods on Cold Rolled Cu Substrate

- Best distribution of rods at 200 rpm.
- Average length of fullerene self-assemblies at 200 rpm is ~5 μm.

Results and discussions

Substrates	Solution
Cold rolled Cu	
Annealed Cu	 Fullerene dispersed in Toluene (2mg/ml)
Electropolished Cu	
Graphene coated Cu	

C₆₀ Self-Assemblies on <u>Annealed Cu Substrate:</u> larger variations in size and morphology

<u>Less</u> control over size and morphology of fullerene rods at lower rpm.

Average length of FSA is ~5 μm.

Size Analysis: Projected Area and Length Distribution of C₆₀ self-assemblies on <u>Annealed Cu Substrate</u>

- Poor distribution at low and high spinning speeds.
- ightharpoonup Average length of 5 μm and projected area of 18 μm² at 200 rpm.

Results and discussions

Substrates	Solution
Cold rolled Cu	
Annealed Cu	 Fullerene dispersed in Toluene (2mg/ml)
Graphene coated Cu	
Electropolished Cu	

C₆₀ rods on <u>Graphene Coated Cu Substrate:</u> <u>Two distinct morphologies</u>

Good control over distribution and morphology of fullerene nanorods at 200 rpm.

average length ~ 5 μm.

Size distribution of larger rods: Projected Area and Length Distribution on <u>Graphene Coated Cu Substrate</u>

 \triangleright Projected area of 10 μ m² with length of 5 μ m.

Results and discussions

Substrates	Solution
Cold rolled Cu	
Annealed Cu	Fullerene dispersed in Toluene (2mg/ml)
Graphene coated Cu	
Electropolished Cu	

Highly controllable synthesis of C₆₀ rods on Electropolished Cu Substrate

Excellent control over size and morphology of fullerene nanorods at lower rpm.

Length of rod : ~10 μm

C₆₀ rods on <u>Electropolished Cu (200 rpm)</u> by AFM Analysis

Length of nanorods is \sim 14 μm with diameter of \sim 1.5 μm.

Size analysis: Projected Area and Length Distribution of rods on <u>Electropolished Cu Substrate</u>

- Best distribution and morphology of rods at 200 rpm.
- Length of fullerene self-assemblies is ~10 μm.

<u>Distinct Nanowire bundles</u> in areas without C₆₀ rods on electropolished Cu

C₆₀ self-assemblies on electropolished Cu (200 rpm).

In contrast, No well-defined nanowires in Graphene Coated Cu (200 rpm)

Areas without nanorods are not well defined as one on EP Cu substrate.

Discussion

- It has been shown from DFT calculations that surface defects on Cu as well as graphene corrugations serve as strong adsorption sites for C_{60} molecules
 - Well defined adsorption sites on electropolished Cu and graphene on Cu lead to more control on size, shape, morphology of C_{60} rods
 - Bigger rods are formed via nucleation and growth during the waiting time of 1 minute prior to ramp-up spreading
 - The nanowires are formed after the ramp-up as a result of 'coalescence' between the remaining C_{60} molecules
 - The coalescence is initiated due to C_{60} - C_{60} interaction arising as a result of spinning
 - The presence of intrinsic surface defects on annealed and cold-rolled Cu leads to less control of C_{60} morphology

Conclusions and Future Outlook

- A simple, wet-chemistry based spin-coating method developed for obtaining c_{60} rods and nanowires in a controllable fashion
- The size, shape and morphology of the C_{60} structures are intimately linked to the substrate on which they are formed.
- The developed method provides a new avenue to achieve high aspect ratio C_{60} molecular wires based interconnects as well as devices with tunable electrical properties (see next slide)

C60 milli-rods: electrical conductivity

Electrical conductivity of millimeter long C_{60} rods (aspect ratio = 10:1) formed from CS_2 solution within a glass/polycarbonate vial

$$\sigma_{rod} = 0.1(\Omega cm)^{-1}$$

$$\sigma_{C60\,film} = 10^{-6} (\Omega cm)^{-1}$$

Polycarbonate

Glass

