Innovative and environmental friendly Fluorine F₂ based cleaning process to replace C₂F₆, CF₄ and NF₃ as cleaning gas SPCC Conference Santa Clara, April 19th 2016 Solvay Special Chem Marcello Riva #### **Outline** - Intro PECVD cleaning technology - Drivers for F₂-based chamber cleaning - Facilitation example for F₂-gas - Hardware and experimental - Cleaning results F₂/Ar/N₂ - 500 wafer run - Waste gas data - Summary and conclusions # **PECVD Chamber Cleaning** Currently used cleaning gases: Oxide / nitride films (PECVD): NF_3 , CF_4 , C_2F_6 , C_3F_8 Poly-Si CVD, MOCVD of W and TiN: NF₃ CVD chambers need frequent cleaning of all process-relevant reactor surfaces to sustain particle- and defect free film deposition # **Drivers for F₂-based Plasma-Cleaning** - Proposed gases: Low GWP* Gas Mixtures - F₂ (GWP=0) as NF₃, PFCs (perfluorocarbon) alternative | | GWP | Life time | | GWP | Life
time | |--------------------------------|-------|-----------|---------------------------------|-------|--------------| | | | | | | tille | | CF ₄ | 7390 | 5000 | NF ₃ | 17200 | 740 | | CHF ₃ | 11700 | 264 | SF ₆ | 22800 | 3200 | | CH ₂ F ₂ | 650 | 5,6 | c-C ₄ F ₈ | 8700 | 3200 | | C_2F_6 | 12200 | 10000 | C ₄ F ₆ | ~0 | ~0 | | C ₃ F ₈ | 7000 | 2600 | c-C ₅ F ₈ | 90 | ~1 | ^{*}GWP (Global Warming Potential); CO₂ = reference = 1 # Properties of F₂-based cleaning gas mixture - F₂ diluted in N₂ and Ar (compressed gas) - Transportable in standard gas cylinder - Corrosive, not inflammable, not explosive - A diluted F₂-gas mixture is best for an efficient chamber clean - F₂ mixtures require a passivation of an existing stainless steel gas delivery system (one time procedure) # F₂ Gas Mixture – Gas Cabinet Example - Gas mixture 1: $F_2/Ar/N_2 \rightarrow 13,56$ MHz plasma - Gas mixture 2: $F_2/Ar/N_2 \rightarrow 400 \text{ kHz RPS-unit}$ - Safety gas cabinet - 3 way valve, purge gas N₂ - Gas cylinder: 10L, 100 bar F₂/Ar/N₂ cylinder #### F₂/Ar/N₂ Gas Mixture – Facilitation Example # **CVD Tools at Fraunhofer EMFT (200mm)** - Alta-CVD, Brooks VX400 PECVD for SiO₂ films PETEOS, BPSG - 13,56 MHz plasma clean, C₂F₆ / NF₃ based - RPS (remote plasma source) clean, NF₃ based - AMAT PECVD, P 5000 PECVD for SiO₂ films, lamp-heated - 13,56 MHz plasma clean, C₂F₆/NF₃ or CF₄ based # **RPS Unit on Top of Alta-CVD Chamber** #### **AMAT P5000 PECVD - Details** Commercially available upgrade # SiO₂ Cleaning Rate – Experimental - Deposition of 2 µm PETEOS-film, 200mm Si-substrates - Thickness measured with reflectometer / ellipsometer - SiO₂-Etch rate calculated from post-etch TEOS film thickness - Constant parameters: 55 deg. C wall / lid temp., 400 deg. C heater temperature - Parameter Variations: Gas flows, chamber pressure, RF-power, Spacing - 30% higher SiO₂ cleaning rate compared to C₂F₆ # 13,56 MHz Plasma Cleaning Process (2) Repeatability of SiO₂ deposition, 3 x 25 wafer | Run # | # of adders (particle size ≥ 0,25µm) | | | | | | |-------|--------------------------------------|------|------|---------|--|--| | | Slot | Slot | Slot | Average | | | | | 1 | 12 | 25 | | | | | 1 | 38 | 7 | 21 | 22 | | | | 2 | 5 | 5 | 32 | 14 | | | | 3 | 11 | 2 | 6 | 6 | | | | Mean | 18 | 5 | 20 | 14 | | | AMAT P5000 lamp-heated CVD, 200mm # 13,56 MHz Plasma Cleaning Process (4) | Amount of clean | Amount of cleaning gas needed for 25 Wafer Lot (1µm SiO2 depo / wafer): | | | | | |-----------------|---|----------------|--------------|--------|--| | | | | | | | | C2F6/O2: | tot. flow/wafer | tot. flow /lot | tot. gas/lot | F2/lot | | | | [slm] | [slm] | [g] | [g] | | | C2F6-Flow | 0,9 | 21,6 | 132,7 | 114,4 | | | O2-Flow | 0,9 | 22,2 | 31,7 | | | | NF3-Flow | 0,1 | 1,9 | 5,9 | | | | Mean SiO2-rate | ~1100nm/min | | | | | | | | | | | | | CF4/O2: | tot. flow/wafer | tot. flow /lot | tot. gas/lot | F2/lot | | | | [slm] | [slm] | [g] | [g] | | | CF4-Flow | 0,8 | 19,3 | 75,7 | 65,3 | | | N2O-Flow | 0,3 | 7,0 | 18,8 | | | | Mean SiO2-rate | ~1200nm/min | | | | | | | | | | | | | F2/Ar/N2: | tot. flow/wafer | tot. flow /lot | tot. gas/lot | F2/lot | | | | [slm] | [slm] | [g] | [g] | | | F2/Ar/N2-Flow | 0,8 | 19,5 | 27,1 | 6,6 | | | Mean SiO2-rate | ~1500nm/min | | | | | | | | | | | | | Ratio C2F6: F2 | 17:1 | | | | | | Ratio CF4: F2 | 10:1 | | | | | # 13,56 MHz Plasma Cleaning Process (5) | Bond Diss | ociati | on energies | | | | |------------------|--|---------------------|------------------------|---|--| | Malagula | | | Dies Enguer | | | | Molecule | | | Diss. Energy | | | | N ₂ | > | N + N | [kJ/mol @ 298K]
945 | | | | F ₂ | | F+F | 155 |) | | | NF ₃ | > | NF ₂ +F | 243 | | | | NF ₂ | > | NF + F | 318 | | | | NF | > | N + F | 301 | | | | NF ₃ | > | N + F +F + F | 862 | | | | CF ₄ | > | CF ₃ + F | 506 | | | | C ₂ | > | C + C | 607 | | | | O ₂ | > | 0+0 | 498 | | | | N ₂ O | > | NO + N | 115 | | | | source: | united states department of commerce, | | | | | | | national bureau od standards, Lewis M. Branscomb | | | | | # 400 kHz RPS Cleaning Process - Gas mixture 2 - Monitored: SiO₂-deposition rate, particles in SiO₂-film25-wafer runs in auto-mode - 500 wafers deposited, clean after every wafer - Optical inspection of process kit parts - F₂ gas mixture has identical cleaning rates of SiO₂ ≥ 1,0 μm/min compared to a BKM NF₃-based recipe - Drop-In recipe to substitute Ar/NF₃ chemistry (same pressure, total flow, spacing, step times) - Potential for optimization still given - Cleaning efficiency of F₂ gas mixture ≥ factor 1,2 compared to NF₃ # 400 kHz RPS Cleaning Process (2) - 4 Step process: - Ar-Flow and Ignition - F₂-addition to Ar - Inner clean - Outer clean - Etch behavior: Center fast SiO₂-etch rate of complete NF₃-cleaning recipe with RPS-Unit #### 400 kHz RPS – 500 Wafer Run - Results (2) # 400 kHz RPS – 500 Wafer Run - Results (3) # 400 kHz RPS - 500 Wafer Run - Results (5) - Optical inspection showed no noticeable effects of the cleaning plasma on process kit parts - PTFE O-rings fully intact, no signs of wear after 500 processed wafers # 400 kHz RPS – 500 Wafer Run - Results (6) # **Waste Gas Analysis** - Atmospheric mass spectrometer was mounted behind process pump exhaust - In case of C₂F₆ compared to F₂-mixture, the absence of the big CF₃ peek confirms our early estimation of a cleaning efficiency factor >17 for F₂-mixture compared to C₂F₆ Waste Gas Analysis (2) C₂F₆ Clean, 13,56 MHz parallel-plate F₂ - gas mixture 2, 440kHz RPS # **Summary and Conclusions** - Higher cleaning efficiency for F₂ gas mixtures - F₂ gas mixtures showed similar performance for particle density and process kit degradation compared to NF₃ / PFCs - Extended life time of process kit parts expected, especially for processes using PFCs as cleaning gases (no CF₃ radicals) - Environmental-friendly processing - Drop-in processes for NF₃, C₂F₆ and CF₄ Marcello Riva marcello.riva@solvay.com #### **Authors:** Michael Pittroff (michael.pittroff@solvay.com Robert Wieland (Robert.Wieland@emft.fraunhofer.de) www.solvay.com