

Innovative and environmental friendly Fluorine F₂ based cleaning process to replace C₂F₆, CF₄ and NF₃ as cleaning gas

SPCC Conference Santa Clara, April 19th 2016

Solvay Special Chem
Marcello Riva

Outline

- Intro PECVD cleaning technology
- Drivers for F₂-based chamber cleaning
- Facilitation example for F₂-gas
- Hardware and experimental
- Cleaning results F₂/Ar/N₂
- 500 wafer run
- Waste gas data
- Summary and conclusions

PECVD Chamber Cleaning

Currently used cleaning gases:

Oxide / nitride films (PECVD): NF_3 , CF_4 , C_2F_6 , C_3F_8

Poly-Si CVD, MOCVD of W and TiN: NF₃

 CVD chambers need frequent cleaning of all process-relevant reactor surfaces to sustain particle- and defect free film deposition

Drivers for F₂-based Plasma-Cleaning

- Proposed gases: Low GWP* Gas Mixtures
- F₂ (GWP=0) as NF₃, PFCs (perfluorocarbon) alternative

	GWP	Life time		GWP	Life time
					tille
CF ₄	7390	5000	NF ₃	17200	740
CHF ₃	11700	264	SF ₆	22800	3200
CH ₂ F ₂	650	5,6	c-C ₄ F ₈	8700	3200
C_2F_6	12200	10000	C ₄ F ₆	~0	~0
C ₃ F ₈	7000	2600	c-C ₅ F ₈	90	~1

^{*}GWP (Global Warming Potential); CO₂ = reference = 1

Properties of F₂-based cleaning gas mixture

- F₂ diluted in N₂ and Ar (compressed gas)
- Transportable in standard gas cylinder
- Corrosive, not inflammable, not explosive
- A diluted F₂-gas mixture is best for an efficient chamber clean
- F₂ mixtures require a passivation of an existing stainless steel gas delivery system (one time procedure)

F₂ Gas Mixture – Gas Cabinet Example

- Gas mixture 1: $F_2/Ar/N_2 \rightarrow 13,56$ MHz plasma
- Gas mixture 2: $F_2/Ar/N_2 \rightarrow 400 \text{ kHz RPS-unit}$

- Safety gas cabinet
- 3 way valve, purge gas N₂
- Gas cylinder: 10L, 100 bar

F₂/Ar/N₂ cylinder

F₂/Ar/N₂ Gas Mixture – Facilitation Example

CVD Tools at Fraunhofer EMFT (200mm)

- Alta-CVD, Brooks VX400
 PECVD for SiO₂ films PETEOS, BPSG
 - 13,56 MHz plasma clean, C₂F₆ / NF₃ based
 - RPS (remote plasma source) clean, NF₃ based

- AMAT PECVD, P 5000
 PECVD for SiO₂ films, lamp-heated
 - 13,56 MHz plasma clean, C₂F₆/NF₃ or CF₄ based

RPS Unit on Top of Alta-CVD Chamber

AMAT P5000 PECVD - Details

Commercially available upgrade

SiO₂ Cleaning Rate – Experimental

- Deposition of 2 µm PETEOS-film, 200mm Si-substrates
- Thickness measured with reflectometer / ellipsometer
- SiO₂-Etch rate calculated from post-etch TEOS film thickness
- Constant parameters:
 55 deg. C wall / lid temp., 400 deg. C heater temperature
- Parameter Variations:
 Gas flows, chamber pressure, RF-power, Spacing
- 30% higher SiO₂ cleaning rate compared to C₂F₆

13,56 MHz Plasma Cleaning Process (2)

Repeatability of SiO₂ deposition, 3 x 25 wafer

Run #	# of adders (particle size ≥ 0,25µm)					
	Slot	Slot	Slot	Average		
	1	12	25			
1	38	7	21	22		
2	5	5	32	14		
3	11	2	6	6		
Mean	18	5	20	14		

AMAT P5000 lamp-heated CVD, 200mm

13,56 MHz Plasma Cleaning Process (4)

Amount of clean	Amount of cleaning gas needed for 25 Wafer Lot (1µm SiO2 depo / wafer):				
C2F6/O2:	tot. flow/wafer	tot. flow /lot	tot. gas/lot	F2/lot	
	[slm]	[slm]	[g]	[g]	
C2F6-Flow	0,9	21,6	132,7	114,4	
O2-Flow	0,9	22,2	31,7		
NF3-Flow	0,1	1,9	5,9		
Mean SiO2-rate	~1100nm/min				
CF4/O2:	tot. flow/wafer	tot. flow /lot	tot. gas/lot	F2/lot	
	[slm]	[slm]	[g]	[g]	
CF4-Flow	0,8	19,3	75,7	65,3	
N2O-Flow	0,3	7,0	18,8		
Mean SiO2-rate	~1200nm/min				
F2/Ar/N2:	tot. flow/wafer	tot. flow /lot	tot. gas/lot	F2/lot	
	[slm]	[slm]	[g]	[g]	
F2/Ar/N2-Flow	0,8	19,5	27,1	6,6	
Mean SiO2-rate	~1500nm/min				
Ratio C2F6: F2	17:1				
Ratio CF4: F2	10:1				

13,56 MHz Plasma Cleaning Process (5)

Bond Diss	ociati	on energies			
Malagula			Dies Enguer		
Molecule			Diss. Energy		
N ₂	>	N + N	[kJ/mol @ 298K] 945		
F ₂		F+F	155)	
NF ₃	>	NF ₂ +F	243		
NF ₂	>	NF + F	318		
NF	>	N + F	301		
NF ₃	>	N + F +F + F	862		
CF ₄	>	CF ₃ + F	506		
C ₂	>	C + C	607		
O ₂	>	0+0	498		
N ₂ O	>	NO + N	115		
source:	united states department of commerce,				
	national bureau od standards, Lewis M. Branscomb				

400 kHz RPS Cleaning Process

- Gas mixture 2
- Monitored: SiO₂-deposition rate, particles in SiO₂-film25-wafer runs in auto-mode
- 500 wafers deposited, clean after every wafer
- Optical inspection of process kit parts
- F₂ gas mixture has identical cleaning rates of SiO₂ ≥ 1,0 μm/min compared to a BKM NF₃-based recipe
- Drop-In recipe to substitute Ar/NF₃ chemistry (same pressure, total flow, spacing, step times)
- Potential for optimization still given
- Cleaning efficiency of F₂ gas mixture ≥ factor 1,2 compared to NF₃

400 kHz RPS Cleaning Process (2)

- 4 Step process:
 - Ar-Flow and Ignition
 - F₂-addition to Ar
 - Inner clean
 - Outer clean
- Etch behavior: Center fast

SiO₂-etch rate of complete NF₃-cleaning recipe with RPS-Unit

400 kHz RPS – 500 Wafer Run - Results (2)

400 kHz RPS – 500 Wafer Run - Results (3)

400 kHz RPS - 500 Wafer Run - Results (5)

- Optical inspection showed no noticeable effects of the cleaning plasma on process kit parts
- PTFE O-rings fully intact, no signs of wear after 500 processed wafers

400 kHz RPS – 500 Wafer Run - Results (6)

Waste Gas Analysis

- Atmospheric mass spectrometer was mounted behind process pump exhaust
- In case of C₂F₆ compared to F₂-mixture, the absence of the big CF₃ peek confirms our early estimation of a cleaning efficiency factor >17 for F₂-mixture compared to C₂F₆

Waste Gas Analysis (2)

C₂F₆ Clean, 13,56 MHz parallel-plate

F₂ - gas mixture 2, 440kHz RPS

Summary and Conclusions

- Higher cleaning efficiency for F₂ gas mixtures
- F₂ gas mixtures showed similar performance for particle density and process kit degradation compared to NF₃ / PFCs
- Extended life time of process kit parts expected, especially for processes using PFCs as cleaning gases (no CF₃ radicals)
- Environmental-friendly processing
- Drop-in processes for NF₃, C₂F₆ and CF₄

Marcello Riva marcello.riva@solvay.com

Authors:

Michael Pittroff (michael.pittroff@solvay.com Robert Wieland (Robert.Wieland@emft.fraunhofer.de)

www.solvay.com