Selectivity in Atomic Layer Etching Using Sequential, Self-Limiting Thermal Reactions Younghee Lee¹, Craig Huffman² and Steven George^{1,3} ¹Depts. of Chemistry & ³Mechanical Engineering, University of Colorado, Boulder, Colorado 80309. ²SUNY Poly SEMATECH, Albany, New York 12203. #### **Outline** - 1. Al₂O₃ ALE using HF and Sn(acac)₂ or Al(CH₃)₃ as metal precursors. - 2. Selectivity using $Sn(acac)_2$, $Al(CH_3)_3$, $AlCl(CH_3)_2$ and $SiCl_4$ as metal precursors. - 3. Selectivity in ALE based on temperature. ### Requirements for Sequential, Self-Limiting Thermal Reactions for ALE Need **spontaneous**, sequential, **self-limiting** thermal reactions that **remove** with atomic control. **Spontaneous** requires thermochemically favorable. Self-limiting requires saturation of surface reaction. Removal requires volatility of reaction product. ## Al₂O₃ ALE Using HF-Pyridine & Sn(acac)₂ as Reactants **HF-Pyridine** Sn(acac)₂ Y. Lee & S.M. George, ACS Nano 9, 2061 (2015). ### Al₂O₃ ALE Using HF & Sn(acac)₂ Y. Lee & S.M. George, ACS Nano 9, 2061 (2015). ## Linear Decrease of Al₂O₃ Film Thickness vs Number of Al₂O₃ ALE Cycles XRR measurements yield etch rate = 0.27 Å/cycle Confirm with spectroscopic ellipsometry (SE) Y. Lee & S.M. George, ACS Nano 9, 2061 (2015). ## Al₂O₃ ALE via Fluorination & Ligand Exchange #### Metal Precursors for ALE #### **Requirements for Metal Precursor:** - 1. Accept fluorine from metal fluoride - 2. Donate ligand to metal in metal fluoride - 3. Metal reaction product is stable & volatile #### **Possible Metal Precursor:** Same precursor as used for ALD of etched material e.g. Al(CH₃)₃ for Al₂O₃ ALE ## Al₂O₃ ALE Using HF-Pyridine & Al(CH₃)₃ as Reactants **HF-Pyridine** $AI(CH_3)_3$ Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. (In Press). ### Al₂O₃ ALE Using HF & Al(CH₃)₃ Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. (In Press). ## Linear Decrease of Al₂O₃ Film Thickness vs Number of Al₂O₃ ALE Cycles XRR measurements yield etch rate = 0.46 Å/cycle Confirm with spectroscopic ellipsometry (SE) Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. (In Press). ## Al₂O₃ ALE via Fluorination & Ligand Exchange #### **Outline** - 1. Al₂O₃ ALE using HF and Sn(acac)₂ or Al(CH₃)₃ as metal precursors. - 2. Selectivity using $Sn(acac)_2$, $Al(CH_3)_3$, $AlCl(CH_3)_2$ and $SiCl_4$ as metal precursors. - 3. Selectivity in ALE based on temperature. ### Selective ALE for Different Materials Different materials represented by various colors* Goal to etch just one material in a background of other materials Selectivity determined by stability & volatility of reaction products *Adapted from C.T. Carver et al., ECS J. Solid State Sci. Technol. 4, N5005 (2015). ### Selectivity During ALE #### **Requirements for Metal Precursor:** - 1. Accept fluorine from metal fluoride - 2. Donate ligand to metal in metal fluoride - 3. Metal reaction product is stable & volatile #### **Strategy for Selectivity:** Use metal precursors with ligands that yield stable & volatile reaction products with target metals ### ALE Using HF & Sn(acac)₂ Selective etching of Al₂O₃, HfO₂ & ZrO₂. Al, Hf & Zr form stable & volatile acac complexes. Al₂O₃, HfO₂, ZrO₂, SiO₂, Si₃N₄, TiN ## Al₂O₃, HfO₂ & ZrO₂ ALE Using HF & Sn(acac)₂ Al₂O₃, HfO₂, ZrO₂ ### ALE Using HF & Al(CH₃)₃ (TMA) Selective etching of Al_2O_3 & HfO_2 . Al & Hf form stable & volatile complexes with methyl groups. Al₂O₃, HfO₂, ZrO₂, SiO₂, Si₃N₄, TiN ## Al₂O₃, HfO₂ & ZrO₂ ALE Using HF & Al(CH₃)₃ (TMA) ### **Understanding Selectivity** Al₂O₃ ALE with Al(CH₃)₃. Ligand-exchange. Stable Al-CH₃ reaction product. SiO₂ ALE with Al(CH₃)₃. No ligandexchange. Si-F bond too stable. ### ALE Using HF & AlCl(CH₃)₂ (DMAC) Selective etching of Al₂O₃, ZrO₂ & HfO₂. Al, Zr & Hf form stable & volatile complexes with chloride or methyl groups. Al₂O₃, HfO₂, ZrO₂, SiO₂, Si₃N₄, TiN ## Al₂O₃, HfO₂ & ZrO₂ ALE Using HF & AlCl(CH₃)₂ (DMAC) Al₂O₃, HfO₂, ZrO₂ ### ALE Using HF & SiCl₄ Selective etching of ZrO₂ & HfO₂. Zr & Hf form stable & volatile complexes with chloride groups. Al₂O₃, HfO₂, ZrO₂, SiO₂, Si₃N₄, TiN ## Al₂O₃, HfO₂ & ZrO₂ ALE Using HF & SiCl₄ Why no etching of Al₂O₃ with SiCl₄? ## Ligand-Exchange Thermochemistry Explains No Al₂O₃ ALE Positive $\triangle G$ for SiCl₄ ligand-exchange for Al₂O₃ ALE. $$\Delta G = 0$$ Negative $\triangle G$ for SiCl₄ ligandexchange >150°C for HfO₂ & ZrO₂ ALE. #### **Outline** - 1. Al₂O₃ ALE using HF and Sn(acac)₂ or Al(CH₃)₃ as metal precursors. - 2. Selectivity using $Sn(acac)_2$, $Al(CH_3)_3$, $AlCl(CH_3)_2$ and $SiCl_4$ as metal precursors. - 3. Selectivity in ALE based on temperature. # Selectivity Based on Temperature for Al₂O₃ ALE Using Different Metal Precursors Different etch rates at various temperatures for different metal precursors. ## Selectivity Based on Temperature for ALE Using SiCl₄ as Metal Precursor ### Conclusions - 1. Thermal ALE possible using sequential, self-limiting fluorination & ligand-exchange reactions. - 2. Thermal ALE using HF and either $Sn(acac)_2$, $Al(CH_3)_3$, $AlCl(CH_3)_2$ or $SiCl_4$ as metal precursors. - 3. Selective ALE is possible. Depends on stability and volatility of reaction products. - 4. Temperature provides additional pathway for selective ALE.