Selectivity in Atomic Layer Etching Using Sequential, Self-Limiting Thermal Reactions

Younghee Lee¹, Craig Huffman² and Steven George^{1,3}

¹Depts. of Chemistry & ³Mechanical Engineering,
University of Colorado, Boulder, Colorado 80309.

²SUNY Poly SEMATECH, Albany, New York 12203.

Outline

- 1. Al₂O₃ ALE using HF and Sn(acac)₂ or Al(CH₃)₃ as metal precursors.
- 2. Selectivity using $Sn(acac)_2$, $Al(CH_3)_3$, $AlCl(CH_3)_2$ and $SiCl_4$ as metal precursors.
- 3. Selectivity in ALE based on temperature.

Requirements for Sequential, Self-Limiting Thermal Reactions for ALE

Need **spontaneous**, sequential, **self-limiting** thermal reactions that **remove** with atomic control.

Spontaneous requires thermochemically favorable.

Self-limiting requires saturation of surface reaction.

Removal requires volatility of reaction product.

Al₂O₃ ALE Using HF-Pyridine & Sn(acac)₂ as Reactants

HF-Pyridine

Sn(acac)₂

Y. Lee & S.M. George, ACS Nano 9, 2061 (2015).

Al₂O₃ ALE Using HF & Sn(acac)₂

Y. Lee & S.M. George, ACS Nano 9, 2061 (2015).

Linear Decrease of Al₂O₃ Film Thickness vs Number of Al₂O₃ ALE Cycles

XRR
measurements
yield etch rate
= 0.27 Å/cycle

Confirm with spectroscopic ellipsometry (SE)

Y. Lee & S.M. George, ACS Nano 9, 2061 (2015).

Al₂O₃ ALE via Fluorination & Ligand Exchange

Metal Precursors for ALE

Requirements for Metal Precursor:

- 1. Accept fluorine from metal fluoride
- 2. Donate ligand to metal in metal fluoride
- 3. Metal reaction product is stable & volatile

Possible Metal Precursor:

Same precursor as used for ALD of etched material e.g. Al(CH₃)₃ for Al₂O₃ ALE

Al₂O₃ ALE Using HF-Pyridine & Al(CH₃)₃ as Reactants

HF-Pyridine

 $AI(CH_3)_3$

Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. (In Press).

Al₂O₃ ALE Using HF & Al(CH₃)₃

Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. (In Press).

Linear Decrease of Al₂O₃ Film Thickness vs Number of Al₂O₃ ALE Cycles

XRR
measurements
yield etch rate
= 0.46 Å/cycle

Confirm with spectroscopic ellipsometry (SE)

Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. (In Press).

Al₂O₃ ALE via Fluorination & Ligand Exchange

Outline

- 1. Al₂O₃ ALE using HF and Sn(acac)₂ or Al(CH₃)₃ as metal precursors.
- 2. Selectivity using $Sn(acac)_2$, $Al(CH_3)_3$, $AlCl(CH_3)_2$ and $SiCl_4$ as metal precursors.
- 3. Selectivity in ALE based on temperature.

Selective ALE for Different Materials

Different materials represented by various colors*

Goal to etch just one material in a background of other materials

Selectivity determined by stability & volatility of reaction products

*Adapted from C.T. Carver et al., ECS J. Solid State Sci. Technol. 4, N5005 (2015).

Selectivity During ALE

Requirements for Metal Precursor:

- 1. Accept fluorine from metal fluoride
- 2. Donate ligand to metal in metal fluoride
- 3. Metal reaction product is stable & volatile

Strategy for Selectivity:

Use metal precursors with ligands that yield stable & volatile reaction products with target metals

ALE Using HF & Sn(acac)₂

Selective etching of Al₂O₃, HfO₂ & ZrO₂.

Al, Hf & Zr form stable & volatile acac complexes.

Al₂O₃, HfO₂, ZrO₂, SiO₂, Si₃N₄, TiN

Al₂O₃, HfO₂ & ZrO₂ ALE Using HF & Sn(acac)₂

Al₂O₃, HfO₂, ZrO₂

ALE Using HF & Al(CH₃)₃ (TMA)

Selective etching of Al_2O_3 & HfO_2 .

Al & Hf form stable & volatile complexes with methyl groups.

Al₂O₃, HfO₂, ZrO₂, SiO₂, Si₃N₄, TiN

Al₂O₃, HfO₂ & ZrO₂ ALE Using HF & Al(CH₃)₃ (TMA)

Understanding Selectivity

Al₂O₃ ALE with Al(CH₃)₃. Ligand-exchange. Stable Al-CH₃ reaction product.

SiO₂ ALE with Al(CH₃)₃. No ligandexchange. Si-F bond too stable.

ALE Using HF & AlCl(CH₃)₂ (DMAC)

Selective etching of Al₂O₃, ZrO₂ & HfO₂.

Al, Zr & Hf form stable & volatile complexes with chloride or methyl groups.

Al₂O₃, HfO₂, ZrO₂, SiO₂, Si₃N₄, TiN

Al₂O₃, HfO₂ & ZrO₂ ALE Using HF & AlCl(CH₃)₂ (DMAC)

Al₂O₃, HfO₂, ZrO₂

ALE Using HF & SiCl₄

Selective etching of ZrO₂ & HfO₂.

Zr & Hf form stable & volatile complexes with chloride groups.

Al₂O₃, HfO₂, ZrO₂, SiO₂, Si₃N₄, TiN

Al₂O₃, HfO₂ & ZrO₂ ALE Using HF & SiCl₄

Why no etching of Al₂O₃ with SiCl₄?

Ligand-Exchange Thermochemistry Explains No Al₂O₃ ALE

Positive $\triangle G$ for SiCl₄ ligand-exchange for Al₂O₃ ALE.

$$\Delta G = 0$$

Negative $\triangle G$ for SiCl₄ ligandexchange >150°C for HfO₂ & ZrO₂ ALE.

Outline

- 1. Al₂O₃ ALE using HF and Sn(acac)₂ or Al(CH₃)₃ as metal precursors.
- 2. Selectivity using $Sn(acac)_2$, $Al(CH_3)_3$, $AlCl(CH_3)_2$ and $SiCl_4$ as metal precursors.
 - 3. Selectivity in ALE based on temperature.

Selectivity Based on Temperature for Al₂O₃ ALE Using Different Metal Precursors

Different etch rates at various temperatures for different metal precursors.

Selectivity Based on Temperature for ALE Using SiCl₄ as Metal Precursor

Conclusions

- 1. Thermal ALE possible using sequential, self-limiting fluorination & ligand-exchange reactions.
- 2. Thermal ALE using HF and either $Sn(acac)_2$, $Al(CH_3)_3$, $AlCl(CH_3)_2$ or $SiCl_4$ as metal precursors.
- 3. Selective ALE is possible. Depends on stability and volatility of reaction products.
 - 4. Temperature provides additional pathway for selective ALE.