rom research to industry

SEMATECH Surface Preparation and Cleaning Conference

Comparison of HF and HCI crosscontamination between different Entegris FOUP platforms and Cucoated wafers

April 19th, 2016 in Santa Clara (CA), USA

leti

*Fernando Herrán, CEA-Leti, <u>presenter</u>, *fernando.herran@cea.fr* Hervé Fontaine, CEA-Leti, *herve.fontaine@cea.fr* Paola González-Aguirre, Entegris, *paola.gonzalez@entegris.com* Carlos Beitia, CEA-Leti, *carlos.beitia@cea.fr* Jim Ohlsen, Entegris, *jim.ohlsen@entegris.com* Jorgen Lundgren, Entegris, *jorgen.lundgren@entegris.com*

CEA–Leti, MINATEC Campus, 38054 Grenoble cedex 9, France **Entegris**, SAS, Parc Centr'Alp Ouest, 196 rue du Rocher de Lorzier, 38430 Moirans, France

- 1. Introduction
- 2. Issues/objectives
- 3. Experimental protocol

4. Results

- HX adsorption by the FOUPs
- HX outgassing from the FOUPs
- ➢ HX transfer to Cu-coated wafers

5. Conclusions

- Solution-diffusion model (polymer membranes): molecular transfer governed by gas **solubility** and **diffusion** in polymers
- New generation FOUPs must minimize the impact of the AMCs (not only particles) onto the wafers

*H. Fontaine et al., Solid State Phenomena, 2008

Ceatech ISSUES/OBJECTIVES

Among AMCs, HX are identified as root cause of defectiveness where moisture and time play a critical role as well:

Objectives: to compare two critical molecules (HF*/HCI) and three Entegris FOUP models in terms of:

- HX contamination, sorption & subsequent release
- HX cross-contamination on stored wafers

*P. Gonzalez-Aguirre et al., Microelectronic Engineering, 2013

EXPERIMENTAL PROTOCOL

SPECTRA PC

Polycarbonate (ref.)

SPECTRA PC/CP

Polycarbonate/Cpowder

⊠A300 EBM/CNT

EBM/C-nanotubes

FOUP INTENTIONAL CONTAMINATION

Contamination phase; t = 24h

10 μ L droplet, evaporation within FOUP's

volume:

- ≻ HF 2% → 9.8 ppmv
- ≻ HCl 3,7% → 10.3 ppmv

Ceatech EXPERIMENTAL PROTOCOL

0) FOUP CONDITIONING Clean room stabilization (21°C, 40% RH) 7 days 1) INTENTIONAL GASEOUS HX CONTAMINATION 10µL- droplet, 24h

2) PURGE

(N₂ gun) 5 min

3) OUTGASSING MONITORING, IMPINGER-IC (once per day) 7 days

IC = Ion Chromatography, LPE = Liquid Phase Extraction

3) STORAGE of Cu-WAFERS, LPE-IC HF: t < 12 days HCI: t < 2 days

SPCC 2016: CEA/LETI-ENTEGRIS | 6

HX SORPTION BY FOUPS

<u>ceatech</u>

SPCC 2016: CEA/LETI-ENTEGRIS 8

leti

Entegris

HX SORPTION BY FOUPS

FOUP contamination: wafer outgassing [HX]_{air}

Ceatech

- 1. [HX]_{air} increases and penetrates the polymer
- 2. FOUP's contamination: f (D, S)

$$[HX]_{pol,s} =$$
 Solub. $[HX]_{air}$
 $J_{HX} = -$ **Diff.** ∇ [HX]_{polymer}

Before purge [ppbv]: [HCI]_{EBM/CNT} ≈ 1000

[HCI]_{PC} ≈ 400 [HCI]_{PC/CP} ≈ 200

5 min purge

Ceatech HX OUTGASSING BY FOUPS

- 1. $[HX]_{air}$ sharp increase until $[HX]_{pol,s}$ equilibrium \rightarrow Solub.
- 2. Outgoing diffusion: $[HX]_{pol,s}$ is reduced $\rightarrow [HX]_{air}$ pulled down
- 3. [HX]_{air} is mainly <u>solubility-dependent</u>

Cu-wafer exposure into HX-contaminated FOUPs

1. HCI outgassing rate: PC ≈ EBM/CNT → though the lowest transfer

Cu-wafer exposure into HX-contaminated FOUPs

- 1. HCI outgassing rate: PC ≈ EBM/CNT → though the lowest transfer
- 2. HX transfer: PC > PC/CP > EBM/CNT
- 3. HF transfer ≈ HCI transfer for EBM/CNT only

HX TRANSFER TO CU-WAFERS

Ceatech

- 1. $[HX]_{air} \rightarrow 0$ (HX affinity Cu) then $[HX]_{pol,s} \rightarrow 0$
- 2. HX molecular flow: FOUP's inner surface \rightarrow copper wafer

3. $D_{air} >> D_{polymer} \rightarrow HX$ transfer to Cu mainly governed by $D_{polymer}$

To summarize:

- \rightarrow HX <u>affinity</u> by FOUP's polymers: HF > HCI
- → HX outgassing after int. contamination: HF < HCl, f (solubility)
- → HX transfer to wafers: HF > HCl, f (diffusivity)
- → EBM/CNT FOUP: exhibits a strong HCl outgassing rate but low transfer to copper wafers (low S and D)
- → FOUP's performance in terms of AMC cross-contamination must be assessed by wafer exposure
- → Among the tested FOUPs, EBM/CNT is the most <u>efficient to limit HF</u> <u>and HCI</u> contamination <u>transfer</u> to wafers → reduced wafer defectiveness is expected

Thanks for your attention

Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France www.leti.fr

