Tungsten Post-CMP Cleaning Formulations for Advanced Nodes: 10 nm and 7 nm

Daniela White*a, Thomas Parsona, Shining Jenqb, Don Fryea, Steve Medda, Ruben Lietenc and Michael Whitea

creating a material advantage

- a. Entegris Inc., R&D Surface Preparation and Integration, 7 Commerce Drive, Danbury CT 06810, Ph: 203-739-1470, daniela.white@entegris.com
- b. TTC, Entegris, Inc. 1F, No 669, Sec. 4, ZhongXing Road| Zhudong Town | Hsin-Chu County 310 Taiwan
- c. Entegris GmbH | Hugo-Junkers-Ring 5 | Gebäude 107/W 01109 Dresden, Germany

Outline

- Development of an efficient W post-CMP cleaner for 10 nm and 7 nm nodes, compatible with barrier liners (TiN) and dielectrics (TEOS, Si₃N₄, SiC, polysilicon);
- Mechanistic considerations and AG-W100 formulation design;
- Particle defect count results on W and dielectric surfaces using AG-W100 formulation;
- W/TiN galvanic corrosion data and knobs to control it;
- SEM on W/TiN 45 nm pattern wafers cleaned with AG-W100;
- Understanding and cleaning organic residue post-CMP on dielectric substrates: contact angle and XPS metrology;
- New AG-W100 CIP formulations with tunable and improved performance.

W/Liner Compatibility, Electrochemical and Cleaning Requirements

Traditional W cleaning with SC-1 or dAmmonia causes bad W etching, recess, galvanic corrosion and poor Si₃N₄ cleaning (particles, organics)!

Need to design a new W post-CMP cleaner with very low W ER, as well as good barrier(liner)/dielectrics compatibility.

Cleaning Requirements:

- W ER < 2 Å/min
- TiN ER < 1 Å/min
- Dielectrics ER < 1 Å/min
- Dielectrics: Si₃N₄, TEOS, SiC, etc.
- Defect counts ΔDC ≥ 0.065 μm lower than commodities: dAmmonia, SC-1
- No/Low W/TiN galvanic cor

W Post-CMP Cleaning Formulation – Mechanistic Design Concepts

CMP Slurry abrasive:

- $Al_2O_3\zeta > 0 \text{ mV};$
- Surface-Treated silica
 (ST-SiO₂) ζ > 0 mV;
- Silica (ζ < 0 mV).

- W ζ reversal

 non-TMAH additive for organic residue removal

Primary Approach (next slide)

PlanarClean® AG-W100 Formulation Additives List – Function and Mechanism

Component	Function	Mechanism
A	non-TMAH pH Adjustor	 Provides the hydroxyl anions and adjust pH needed for W surface hydroxylation and good wetting Ensures negative surface charge on both wafer and contamination, by being adsorbed on inorganic and organic residues.
B & C	Complexing Agents	 Surface Modification (ST-SiO₂ and Al₂O₃ complexants) Stabilization of particle with electrostatic repulsion (prevent agglomeration and re-precipitation)
D	Dispersing Agent	 Interacts with particles and wafer surfaces to prevent aggregation and control etch rate.

Zeta Potential for Slurry NP (Alumina, Silica), W and Dielectrics Surfaces in Contact with AG-W100 Formulation

- Control dispersions, pH ~ 3-4;
- All surfaces are strongly negatively charged in AG-W100;
- Charge reversal for alumina, silicon nitride and silicon carbide;
- pH_{IEP}TiN ~ 4-5, TiN surfaces negatively charged in AG-W100;
- Strong repulsion-type interactions between all surfaces to be cleaned (W/WO₃, TiN, TEOS, Si₃N₄, SiC) and CMP slurry particles (alumina, silica).

Etch Rates of CVD W, TiN, TEOS, Si₃N₄ and SiC with PlanarClean[®] AG-W100

Formulation	Avg. ER(Å/min)	Std. Dev.
DHF 100:1	0.3889	0.0038
NH ₄ 0H:H ₂ 0 = 1:2850	1.1844	0.0234
PC AG-W100 60:1	0.5822	0.0139

- PlanarClean® AG-W100 has W etch rate < 0.6 Å/min.
- PlanarClean® AG-W100 has lower (controlled) W etch rate than NH₄0H:H₂0 = 1:2850.
- TiN, TEOS, Si₃N₄ and SiC have ERs < 0.2Å/min

PC AG-W100 vs. dAmmonia Cleaning Data

Experiment done in collaboration with IMEC - Leuven, Belgium

- AMAT Reflexion LK polishing tool
- KLA SP-3 defect inspection tool
- Si₃N₄ 51X less defects than dAmmonia;
- SiO₂ defects comparable to dAmmonia;
- W defects very low;
- Metal impurities on W wafers much lower.

Defect Counts on 8" TEOS & Si₃N₄ Wafers After Cleaning: PlanarClean® AG-W100 vs. SC-1 – 3X-5X Less Defects

Experiment done in collaboration with AXUS - AZ

The defect counts on TEOS with PC AG-W100 are 3X better than SC-1

The defect on SiN with PC AG-W100 is 5X better than SC-1

- Detection limit: 150 nm

PC AG-W100 W/TiN Galvanic Corrosion Tafel Plots

PC AGW-100 baseline

	TiN	Corrosion	W
Galvanic Corrosion of TiN (Å/min)	0.069		
Material	Anode: TiN		Cathode: W
Corrosion Potential (V)	-0.584	-0.566	-0.557
Corrosion Current (A)	9.85E-07	7.24E-07	1.78E-06
Corrosion Rate	0.003	0.060	0.101

(Å/min)

CONFIDENTIAL | 10

W (cathode) protected TiN (anode) low corrosion

PC AGW-100 baseline + different % [Component D]

	TiN	Galvanic Corrosion	w
Galvanic Corrosion of TiN (Å/min)	0.013		
Material	Anode: TiN		Cathode: W
Corrosion Potential (V)	-0.584	-0.581	-0.579
Corrosion Current (A)	1.08E-06	1.37E-07	1.90E-06
Corrosion Rate (Å/min)	0.102	0.013	0.108
Slope	4.89E-05		8.64E-05

Good overlay
W (cathode) protected
Minimal galvanic corrosion

	TiN	Galvanic Corrosion	W
Galvanic Corrosion of W (Å/min)			0.013
Material	Cathode: TiN		Anode: W
Corrosion Potential (V)	-0.59	-0.594	-0.596
Corrosion Current (A)	1.26E-06	2.26E-07	2.10E-06
Corrosion Rate (Å/min)	0.119	0.013	0.119
Slope	5.72E-05		9.54E-05

TiN (cathode) protected Minimal galvanic corrosion

PC AGW-300 - 45nm W/TiN Pattern SEM Characterization

- W lines (control) already etched in the center by the CMP process
- Dirty control generates fuzzy SEM images;
- AG-W100 cleaned controls have sharper lines @ W/TiN interfaces and generate clear SEM pictures

Silicon Nitride Contamination Study with W CMP Slurry Additives: Organic Contaminants

Organic Contaminants Precipitated During Post-CMP DIW Rinse

Organic contaminant (W inhibitor)

- No/minimal changes for slurry filtrate with pH
- CMP slurry releases organic residue during post-CMP rinse;
- Most sensitive: Formamide values variation

Organic Residue Adsorption on Si₃N₄ from low pH W CMP Slurry - Contact Angle Data

Cleaning Organic Residue on Si₃N₄ with PC AGW-100 - Metrology

Cleaning Organic Residue on Si₃N₄ with PC AG-W100 - Metrology

2. X-Ray Photoelectron Spectroscopy (XPS)

Best cleaner generates:

- the thinnest WO₃ surface layer;
- lowest % surface atoms: C, N, O, etc.

PC AG-W100 CIP Formulations

	TiN	Galvanic Corrosion	w
Galvanic Corrosion of TiN (Å/min)	0.268		
Material	Anode: TiN		Cathode: W
Corrosion Potential (V)	-0.494	-0.426	-0.422
Corrosion Current (A)	1.22E-06	2.83E-06	1.31E-05
Corrosion Rate (Å/min)	0.115	0.268	0.744
Slope	5.53E-05		5.97E-04

	TiN	Galvanic Corrosion	w
Galvanic Corrosion of W (Å/min)	0.013		
Material	Cathode: TiN		Anode: W
Corrosion Potential (V)	-0.622	-0.626	-0.625
Corrosion Current (A)	1.76E-06	2.35E-07	1.13E-05
Corrosion Rate (Å/min)	0.167	0.013	0.642
Slope	8.02E-05		5.16E-04

CONFIDENTIA

Cleaning Performance for PC AG-W100 CIP 1 and CIP 2 Formulations

Experiment done in collaboration with IMEC, Leuven, Belgium

- AMAT Reflexion LK polishing tool
- KLA SP-3 defect inspection tool

 $Si_3N_4 \Delta DC >= 0.065 \mu m^*$

Si₃N₄ - ~125x less defects than dNH₃
 W - ~ 3.5x less defects than dNH₃
 SiO₂ - comparable with dNH₃

Conclusions

- W/TiN/Dielectrics post-CMP cleaning formulation PlanarClean® AG-W100, was successfully developed and tested for performance:
- Low particle count defects (on SP3) big improvement over the commodities like dAmmonia and SC-1;
- Low/no W/TiN galvanic corrosion (Tafel plots) tunable by varying components;
- Low/no W/TiN interfacial corrosion on 45 nm pattern wafers (SEM);
- Low/no post-CMP organic residue on dielectric substrates (FTIR-ATR, contact angle, XPS);
- CIP versions with tunable and improved performance in development.

Acknowledgements

- Robin Van Den Nieuwenhuizen financial support
- Emanuel Cooper, Jun Liu, Liz Thomas, Volley Wang, Spencer Tu –
 brainstorming and consulting
- Atanu Das electrochemistry
- Mike Deangelo, Asa Frye SEM characterization
- Mike Owens lab formulations
- Cuong Tran marketing advice
- Fadi Coder sales and marketing advice

creating a material advantage